Python 3

Object Oriented Programming

Harness the power of Python 3 objects

PACKT x

Python 3 Object Oriented
Programming

Harness the power of Python 3 objects

Dusty Phillips

open SOUFCG

eeeeeeeeeeeeeeeeeeeeeeeeee

PUBLISHING

BIRMINGHAM - MUMBAI

Python 3 Object Oriented Programming

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2010
Production Reference: 1160710

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849511-26-1
www . packtpub.com

Cover Image by Asher Wishkerman (a.wishkermanempic.de)

Author
Dusty Phillips

Reviewers
Jason Chu

Michael Driscoll
Dan McGee

Lawrence Oluyede

Acquisition Editor
Steven Wilding

Development Editor
Mayuri Kokate

Technical Editor
Vanjeet D'souza

Indexer
Hemangini Bari

Credits

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Jovita Pinto

Proofreader
Chris Smith

Graphics
Geetanjali Sawant

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Dusty Phillips is a Canadian freelance software developer, teacher, martial artist,
and open source aficionado. He is closely affiliated with the Arch Linux community
and other open source projects. He maintains the Arch Linux storefronts, and
compiled the popular Arch Linux Handbook. Dusty holds a Master's degree in
Computer Science specializing in Human-Computer Interaction. He currently

has six different Python interpreters installed on his computer.

I would like to thank my editors, Steven Wilding and Mayuri Kokate
for well-timed encouragement and feedback. Many thanks to friend
and mentor Jason Chu for getting me started in Python and for
patiently answering numerous questions on Python, GIT, and life
over the years. Thanks to my father, C. C. Phillips, for inspiring me
to write while editing his terrific works of fiction. Finally, thanks

to every person who has said they can't wait to buy my book; your
enthusiasm has been a huge motivational force.

About the Reviewers

Jason Chu is the CTO and part founder of Oprius Software Inc. He's developed
software professionally for over 8 years. Chu started using Python in 2003 with
version 2.2. When not developing personal or professional software, he spends his
time teaching karate, playing go, and having fun in his hometown: Victoria, BC,
Canada. You'll often find him out drinking the Back Hand of God Stout at Christie's
Carriage House.

Michael Driscoll has been programming Python for almost 4 years and has
dabbled in other languages since the late nineties. He graduated from university
with a Bachelor's degree in Science, majoring in Management Information Systems.
Michael enjoys programming for fun and profit. His hobbies include biblical
apologetics, blogging about Python at http://www.blog.pythonlibrary.org/,
and learning photography. Michael currently works for the local government
where he programs with Python as much as possible. This is his first book as a
technical reviewer.

I would like to thank my mom without whom I never would have
grown to love learning as much as I do. I would also like to thank
Scott Williams for forcing me to learn Python as, without him, I
wouldn't have even known that the language existed. Most of all, I
want to thank Jesus for saving me from myself.

Dan McGee is a software developer currently living in Chicago, Illinois. He has
several years of experience working full-time in the Chicago area doing primarily
Java web development; however, he has also been spotted working in a variety of
other languages. Dan has also worked on a handful of freelance projects. In 2007,
Dan became a developer for the Arch Linux distribution and has been doing various
projects related to that since, including hacking on the package manager code, being
a part-time system admin, and helping maintain and improve the website.

Lawrence Oluyede is a 26 years old software development expert in Python and
web programming. He's glad that programming is going parallel and functional
languages are becoming mainstream. He has been a co-author and reviewer for the
first Ruby book in Italian (Ruby per applicazioni web) published by Apogeo. He has also
contributed to other books in the past like the Python Cookbook (http://www.amazon.
com/Python-Cookbook-Alex-Martelli/dp/0596007973/) and The Definitive Guide
to Django (http://www.amazon.com/Definitive-Guide-Django-Development -
Right/dp/1590597257).

Table of Contents

Preface 1
Chapter 1: Object-oriented Design 7
Object-oriented? 7
Objects and classes 9
Specifying attributes and behaviors 1
Data describes objects 11
Behaviors are actions 13
Hiding details and creating the public interface 14
Composition and inheritance 17
Inheritance 20
Inheritance provides abstraction 22
Multiple inheritance 23
Case study 24
Exercises 31
Summary 32
Chapter 2: Objects in Python 33
Creating Python classes 33
Adding attributes 35
Making it do something 35
Initializing the object 38
Explaining yourself 41
Modules and packages 43
Organizing the modules 45
Absolute imports 46
Relative imports 47
Who can access my data? 50
Case study 53
Exercises 61
Summary 62

Table of Contents

Chapter 3: When Objects are Alike 63
Basic inheritance 63
Extending built-ins 66
Overriding and super 67
Multiple inheritance 68
The diamond problem 71
Different sets of arguments 75
Polymorphism 78
Case study 80
Exercises 93
Summary 94
Chapter 4: Expecting the Unexpected 95
Raising exceptions 95
Raising an exception 98
What happens when an exception occurs? 99
Handling exceptions 101
Exception hierarchy 106
Defining our own exceptions 108
Exceptions aren't exceptional 109
Case study 112
Exercises 122
Summary 123
Chapter 5: When to Use Object-oriented Programming 125
Treat objects as objects 125
Using properties to add behavior to class data 129
How it works 132
Decorators: another way to create properties 134
When should we use properties? 135
Managing objects 137
Removing duplicate code 140

In practice 142

Or we can use composition 145
Case study 147
Exercises 154
Summary 156
Chapter 6: Python Data Structures 157
Empty objects 157
Tuples and named tuples 159
Named tuples 161
Dictionaries 162

Lii]

Table of Contents

When should we use dictionaries? 166
Using defaultdict 166
Lists 168
Sorting lists 171
Sets 173
Extending built-ins 177
Case study 182
Exercises 188
Summary 189
Chapter 7: Python Object-oriented Shortcuts 191
Python built-in functions 191
Len 192
Reversed 192
Enumerate 193
Zip 194
Other functions 196
Comprehensions 197
List comprehensions 198
Set and dictionary comprehensions 200
Generator expressions 201
Generators 203
An alternative to method overloading 205
Default arguments 207
Variable argument lists 208
Unpacking arguments 212
Functions are objects too 213
Using functions as attributes 218
Callable objects 219
Case study 220
Exercises 224
Summary 225
Chapter 8: Python Design Patterns | 227
Design patterns 227
Decorator pattern 229
Decorator example 230
Decorators in Python 233
Observer pattern 235
Observer example 235
Strategy pattern 237
Strategy example 238

[iii]

Table of Contents

Strategy in Python 240
State pattern 240
State example 241
State versus strategy 247
Singleton pattern 247
Singleton implementation 248
Module variables can mimic singletons 249
Template pattern 251
Template example 252
Exercises 255
Summary 256
Chapter 9: Python Design Patterns Il 257
Adapter pattern 257
Facade pattern 260
Flyweight pattern 263
Command pattern 267
Abstract factory pattern 271
Composite pattern 276
Exercises 280
Summary 281
Chapter 10: Files and Strings 283
Strings 283
String manipulation 284
String formatting 287
Escaping braces 288
Keyword arguments 288
Container lookups 289
Object lookups 291
Making it look right 291
Strings are Unicode 294
Converting bytes to text 295
Converting text to bytes 296
Mutable byte strings 297
File 10 299
Placing it in context 301
Faking files 302
Storing objects 303
Customizing pickles 305
Serializing web objects 308
Exercises 310
Summary 312

[iv]

Table of Contents

Chapter 11: Testing Object-oriented Programs 313
Why test? 313
Test-driven development 315
Unit testing 316
Assertion methods 318
Additional assertion methods in Python 3.1 319
Reducing boilerplate and cleaning up 320
Organizing and running tests 322
Ignoring broken tests 323
Testing with py.test 324
One way to do setup and cleanup 326
A completely different way to set up variables 329
Test skipping with py.test 333
py.test extras 335
How much testing is enough? 336
Case Study 339
Implementing it 340
Exercises 345
Summary 346
Chapter 12: Common Python 3 Libraries 347
Database access 348
Introducing SQLAIchemy 349
Adding and querying objects 351
SQL Expression Language 352
Pretty user interfaces 353
Tkinter 354
PyQt 358
Choosing a GUI toolkit 361
XML 362
ElementTree 362
Constructing XML documents 366
[xml 366
CherryPy 368
A full web stack? 370
Exercises 377
Summary 378

Index 379

[v]

Preface

This book will introduce you to the terminology of the object-oriented paradigm,
focusing on object-oriented design with step-by-step examples. It will take you from
simple inheritance, one of the most useful tools in the object-oriented programmer's
toolbox, all the way through to cooperative inheritance, one of the most complicated.
You will be able to raise, handle, define, and manipulate exceptions.

You will be able to integrate the object-oriented and not-so-object-oriented aspects of
Python. You will also be able to create maintainable applications by studying higher-
level design patterns. You'll learn the complexities of string and file manipulation
and how Python distinguishes between binary and textual data. Not one, but

two very powerful automated testing systems will be introduced to you. You'll
understand the joy of unit testing and just how easy unit tests are to create. You'll
even study higher-level libraries such as database connectors and GUI toolkits and
how they apply object-oriented principles.

What this book covers

Chapter 1, Object-oriented Design covers important object-oriented concepts. It deals
mainly with abstraction, classes, encapsulation, and inheritance. We also briefly look
into UML to model our classes and objects.

Chapter 2, Objects in Python discusses classes and objects and how they are used in
Python. We will learn about attributes and behaviors in Python objects, and also the
organization of classes into packages and modules. And lastly we shall see how to
protect our data.

Chapter 3, When Objects are Alike gives us a more in-depth look into inheritance. It
covers multiple inheritance and shows us how to inherit from built-ins. This chapter
also covers polymorphism and duck typing.

Preface

Chapter 4, Expecting the Unexpected looks into exceptions and exception handling. We
shall learn how to create our own exceptions. It also deals with the use of exceptions
for program flow control.

Chapter 5, When to Use Object-oriented Programming deals with objects; when to create
and use them. We will see how to wrap data using properties, and restricting data
access. This chapter also discusses the DRY principle and how not to repeat code.

Chapter 6, Python Data Structures covers object-oriented features of data structures.
This chapter mainly deals with tuples, dictionaries, lists, and sets. We will also see
how to extend built-in objects.

Chapter 7, Python Object-oriented Shortcuts as the name suggests, deals with little
time-savers in Python. We shall look at many useful built-in functions, then move
on to using comprehensions in lists, sets, and dictionaries. We will learn about
generators, method overloading, and default arguments. We shall also see how
to use functions as objects.

Chapter 8, Python Design Patterns I first introduces us to Python design patterns. We
shall then see the decorator pattern, observer pattern, strategy pattern, state pattern,
singleton pattern, and template pattern. These patterns are discussed with suitable
examples and programs implemented in Python.

Chapter 9, Python Design Patterns 1I picks up where the previous chapter left us. We
shall see the adapter pattern, facade pattern, flyweight pattern, command pattern,
abstract pattern, and composite pattern with suitable examples in Python.

Chapter 10, Files and Strings looks at strings and string formatting. Bytes and byte
arrays are also discussed. We shall also look at files, and how to write and read data
to and from files. We shall look at ways to store and pickle objects, and finally the
chapter discusses serializing objects.

Chapter 11, Testing Object-oriented Programs opens with the use of testing and why
testing is so important. It focuses on test-driven development. We shall see how to
use the unittest module, and also the py . test automated testing suite. Lastly we
shall cover code coverage using coverage.py.

Chapter 12, Common Python 3 Libraries concentrates on libraries and their utilization
in application building. We shall build databases using SQLAlchemy, and user
interfaces Tkinter and PyQt. The chapter goes on to discuss how to construct XML
documents and we shall see how to use ElementTree and Ixml. Lastly we will use
CherryPy and Jinja to create a web application.

[2]

Preface

What you need for this book
In order to compile and run the examples mentioned in this book you require the
following software:

* Python version 3.0 or higher

* py.test

* coverage.py

* SQLAlchemy

* Ppygame

* PyQt

e CherryPy
e Ixml

Who this book is for

If you're new to object-oriented programming techniques, or if you have basic
Python skills, and wish to learn in depth how and when to correctly apply
object-oriented programming in Python, this is the book for you.

If you are an object-oriented programmer for other languages you will also find
this book a useful introduction to Python, as it uses terminology you are already
familiar with.

Python 2 programmers seeking a leg up in the new world of Python 3 will also find
the book beneficial but you need not necessarily know Python 2.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can access other Python modules
through the use of the import statement."

[31]

Preface

A block of code is set as follows:

class Friend (Contact) :
def init (self, name, email, phone):
self.name = name
self.email = email
self.phone = phone

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

class Friend (Contact) :
def init (self, name, email, phone):
self.name = name
self.email = email
self.phone = phone

Any command-line input or output is written as follows:

>>> e = EmailableContact ("John Smith", "jsmith@example.net")

>>> Contact.all contacts

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "We use
this feature to update the label to a new random value every time we click the
Roll! button".

%j%‘\ Warnings or important notes appear in a box like this.
(:;l Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message.

[4]

Preface

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www . packtpub . com or
e-mail suggeste@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you get the most from your purchase.

Downloading the example code for this book

I You can download the example code files for all Packt books you have
Q purchased from your account at http: //www.PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions

of this book. If you find any errata, please report them by visiting http: //www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub. com/support.

[51]

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

Object-oriented Design

In software development, design is often considered the step done before
programming. This isn't true; in reality, analysis, programming, and design
tend to overlap, combine, and interweave. In this chapter, we will learn:

e What object-oriented means

o The difference between object-oriented design and object-oriented
programming

e The basic principles of object-oriented design

e Basic Unified Modeling Language and when it isn't evil

Object-oriented?

Everyone knows what an object is: a tangible "something" that we can sense, feel, and
manipulate. The earliest objects we interact with are typically baby toys. Wooden
blocks, plastic shapes, and over-sized puzzle pieces are common first objects. Babies
learn quickly that certain objects do certain things. Triangles fit in triangle-shaped
holes. Bells ring, buttons press, and levers pull.

The definition of an object in software development is not so very different. Objects
are not typically tangible somethings that you can pick up, sense, or feel, but they are
models of somethings that can do certain things and have certain things done to them.
Formally, an object is a collection of data and associated behaviors.

So knowing what an object is, what does it mean to be object-oriented? Oriented
simply means directed toward. So object-oriented simply means, "functionally
directed toward modeling objects". It is one of many techniques used for modeling
complex systems by describing a collection of interacting objects via their data

and behavior.

Object-oriented Design

If you've read any hype, you've probably come across the terms object-oriented
analysis, object-oriented design, object-oriented analysis and design, and
object-oriented programming. These are all highly related concepts under

the general object-oriented umbrella.

In fact, analysis, design, and programming are all stages of software development.
Calling them object-oriented simply specifies what style of software development is
being pursued.

Object-oriented Analysis (OOA) is the process of looking at a problem, system,
or task that somebody wants to turn into an application and identifying the objects
and interactions between those objects. The analysis stage is all about what needs
to be done. The output of the analysis stage is a set of requirements. If we were to
complete the analysis stage in one step, we would have turned a task, such as, "I
need a website", into a set of requirements, such as:

Visitors to the website need to be able to (italic represents actions, bold
represents objects):

e review our history
e apply for jobs
e browse, compare, and order our products

Object-oriented Design (OOD) is the process of converting such requirements into
an implementation specification. The designer must name the objects, define the
behaviors, and formally specify what objects can activate specific behaviors on
other objects. The design stage is all about how things should be done. The output
of the design stage is an implementation specification. If we were to complete the
design stage in one step, we would have turned the requirements into a set of
classes and interfaces that could be implemented in (ideally) any object-oriented
programming language.

Object-oriented Programming (OOP) is the process of converting this perfectly
defined design into a working program that does exactly what the CEO
originally requested.

Yeah, right! It would be lovely if the world met this ideal and we could follow these
stages one by one, in perfect order like all the old textbooks told us to. As usual, the
real world is much murkier. No matter how hard we try to separate these stages,
we'll always find things that need further analysis while we're designing. When
we're programming, we find features that need clarification in the design. In the
fast-paced modern world, most development happens in an iterative development
model. In iterative development, a small part of the task is modeled, designed, and
programmed, then the program is reviewed and expanded to improve each feature
and include new features in a series of short cycles.

[8]

Chapter 1

The rest of this book is about object-oriented programming, but in this chapter we
will cover the basic object-oriented principles in the context of design. This allows us
to understand these rather simple concepts without having to argue with software
syntax or interpreters.

Objects and classes

So, an object is a collection of data with associated behaviors. How do we tell two
types of objects apart? Apples and oranges are both objects, but it is a common
adage that they cannot be compared. Apples and oranges aren't modeled very often
in computer programming, but let's pretend we're doing an inventory application for
a fruit farm! As an example, we can assume that apples go in barrels and oranges go
in baskets.

Now, we have four kinds of objects: apples, oranges, baskets, and barrels. In
object-oriented modeling, the term used for kinds of objects is class. So, in
technical terms, we now have four classes of objects.

What's the difference between an object and a class? Classes describe objects. They
are like blueprints for creating an object. You might have three oranges sitting on the
table in front of you. Each orange is a distinct object, but all three have the attributes
and behaviors associated with one class: the general class of oranges.

The relationship between the four classes of objects in our inventory system can
be described using a Unified Modeling Language (invariably referred to as UML,
because three letter acronyms are cool) class diagram. Here is our first class diagram:

| Orange — Basket |
| Apple |—| Barrel |

This diagram simply shows that an Orange is somehow associated with a Basket
and that an Apple is also somehow associated with a Barrel. Association is the most
basic way for two classes to be related.

UML is very popular among managers, and occasionally disparaged by
programmers. The syntax of a UML diagram is generally pretty obvious; you don't
have to read a tutorial to (mostly) understand what is going on when you see one.
UML is also fairly easy to draw, and quite intuitive. After all, many people, when
describing classes and their relationships, will naturally draw boxes with lines
between them. Having a standard based on these intuitive diagrams makes it easy
for programmers to communicate with designers, managers, and each other.

[o]

Object-oriented Design

However, some programmers think UML is a waste of time. Citing iterative
development, they will argue that formal specifications done up in fancy UML
diagrams are going to be redundant before they're implemented, and that
maintaining those formal diagrams will only waste time and not benefit anyone.

This is true of some organizations, and hogwash in other corporate cultures.
However, every programming team consisting of more than one person will
occasionally have to sit down and hash out the details of part of the system they are
currently working on. UML is extremely useful, in these brainstorming sessions, for
quick and easy communication. Even those organizations that scoff at formal class
diagrams tend to use some informal version of UML in their design meetings, or
team discussions.

Further, the most important person you ever have to communicate with is yourself.
We all think we can remember the design decisions we've made, but there are
always, "Why did I do that?" moments hiding in our future. If we keep the scraps of
paper we did our initial diagramming on when we started a design, we'll eventually
find that they are a useful reference.

This chapter, however, is not meant to be a tutorial in UML. There are many of
those available on the Internet, as well as numerous books available on the topic.
UML covers far more than class and object diagrams; it also has syntax for use cases,
deployment, state changes, and activities. We'll be dealing with some common class
diagram syntax in this discussion of object-oriented design. You'll find you can pick
up the structure by example, and you'll subconsciously choose UML-inspired syntax
in your own team or personal design sessions.

Our initial diagram, while correct, does not remind us that apples go in barrels or
how many barrels a single apple can go in. It only tells us that apples are somehow
associated with barrels. The association between classes is often obvious and needs
no further explanation, but the option to add further clarification is always there.
The beauty of UML is that most things are optional. We only need to specify as
much information in a diagram as makes sense for the current situation. In a quick
whiteboard session, we might just quickly draw lines between boxes. In a formal
document that needs to make sense in six months, we might go into more detail.
In the case of apples and barrels, we can be fairly confident that the association is,
"many apples go in one barrel", but just to make sure nobody confuses it with, "one
apple spoils one barrel", we can enhance the diagram as shown:

| Orange — Basket |
* g0 inp 1

g0 inp

* 1
| Apple |—| Barrel |

[10]

Chapter 1

This diagram tells us that oranges go in baskets with a little arrow showing what
goes in what. It also tells us the multiplicity (number of that object that can be used
in the association) on both sides of the relationship. One Basket can hold many
(represented by a *) Orange objects. Any one Orange can go in exactly one Basket.

It can be easy to confuse which side of a relationship the multiplicity goes on. The
multiplicity is the number of objects of that class that can be associated with any one
object at the other end of the association. For the apple goes in barrel association,
reading from left to right, many instances of the Apple class (that is many Apple
objects) can go in any one Barrel. Reading from right to left, exactly one Barrel can
be associated with any one Apple.

Specifying attributes and behaviors

We now have a grasp on some basic object-oriented terminology. Objects are
instances of classes that can be associated with each other. An object instance is a
specific object with its own set of data and behaviors; a specific orange on the table
in front of us is said to be an instance of the general class of oranges. That's simple
enough, but what are these data and behaviors that are associated with each object?

Data describes objects

Let's start with data. Data typically represents the individual characteristics of a
certain object. A class of objects can define specific characteristics that are shared by
all instances of that class. Each instance can then have different data values for the
given characteristics. For example, our three oranges on the table (if we haven't eaten
any) could each have a different weight. The orange class could then have a weight
attribute. All instances of the orange class have a weight attribute, but each orange
might have a different value for this weight. Attributes don't have to be unique
though; any two oranges may weigh the same amount. As a more realistic example,
two objects representing different customers might have the same value for a first
name attribute.

Attributes are frequently referred to as properties. Some authors suggest that

the two terms have different meanings, usually that attributes are settable, while
properties are read only. In Python, the concept of "read only" is not really used, so
throughout this book we'll see the two terms used interchangeably. In addition, as
we'll discuss in Chapter 5, the property keyword has a special meaning in Python for
a particular kind of attribute.

[11]

Object-oriented Design

In our fruit inventory application, the fruit farmer may want to know what orchard
the orange came from, when it was picked, and how much it weighs. They might
also want to keep track of where each basket is stored. Apples might have a color
attribute and barrels might come in different sizes. Some of these properties may also
belong to multiple classes (we may want to know when apples are picked, too), but
for this first example, let's just add a few different attributes to our class diagram:

Orange
+Weight
+Orchard Baslfet
+Date_Picked +location
1
goinp
goinp
*
1
Apple Barrel
+color +size
+Weight

Depending on how detailed our design needs to be, we can also specify the type

for each attribute. Attribute types are often primitives that are standard to most
programming languages, such as integer, floating-point number, string, byte, or
boolean. However, they can also represent data structures such as lists, trees, or
graphs, or, most notably, other classes. This is one area where the design stage can
overlap with the programming stage. The various primitives or objects available

in one programming language may be somewhat different from what is available
in other languages. Usually we don't need to concern ourselves with this at the
design stage, as implementation-specific details are chosen during the programming
stage. Use generic names and we'll be fine. If our design calls for a list container
type, the Java programmers can choose to use a LinkedList or an ArrayList when
implementing it, while the Python programmers (that's us!) can choose between the
list built-in and a tuple.

In our fruit farming example, so far, our attributes are all basic primitives. But
there are implicit attributes that we can make explicit: the associations. For a given
orange, we might have an attribute containing the basket that holds that orange.
Alternatively, one basket might contain a list of the oranges it holds. The next
diagram adds these attributes as well as including type descriptions for our
current properties:

[12]

Chapter 1

Orange
+Weight
+Orchard Baslfet
+Date_Picked: date +location
+basket: Basket +Oranies. List
goinp
goinp
*
1
Apple Barrel
+\3\(/)|tht +size
+Weig 1
+barrel: Barrel *appels: List

Behaviors are actions

Now we know what data is, but what are behaviors? Behaviors are actions that
can occur on an object. The behaviors that can be performed on a specific class of
objects are called methods. At the programming level, methods are like functions
in structured programming, but they magically have access to all the data
associated with that object. Like functions, methods can also accept parameters,
and return values.

Parameters to a method are a list of objects that need to be passed into the method
that is being called. These objects are used by the method to perform whatever
behavior or task it is meant to do. Return values are the results of that task. Here's

a concrete example; if our objects are numbers, the number class might have an add
method that accepts a second number as a parameter. The first number object's add
method will return the sum when the second number is passed to it. Given an object
and it's method name, a calling object can call, or invoke the method on the target
object. Invoking a method, at the programming level, is the process of telling the
method to execute itself by passing it the required parameters as arguments.

We've stretched our, "comparing apples and oranges" example into a basic

(if far-fetched) inventory application. Let's stretch it a little further and see if it
breaks. One action that can be associated with oranges is the pick action. If you
think about implementation, pick would place the orange in a basket by updating
the basket attribute on the orange, and by adding the orange to the oranges list on
the Basket. So pick needs to know what basket it is dealing with. We do this by
giving the pick method a basket parameter. Since our fruit farmer also sells juice,
we can add a squeeze method to Orange. When squeezed, squeeze might return the
amount of juice retrieved, while also removing the Orange from the basket it was in.

[13]

Object-oriented Design

Basket can have a sell action. When a basket is sold, our inventory system

might update some data on as-yet unspecified objects for accounting and profit
calculations. Alternatively, our basket of oranges might go bad before we can sell
them, so we add a discard method. Let's add these methods to our diagram:

Orange
+Weight: float
+Orchard: string Basket
+Date_Picked: date +location: string
+basket: Basket +oranges
+pick(basket:Basket) +sell(customer: Customer)
+squeeze(): amount_of juice +discard

* 1
goin »

Adding models and methods to individual objects allows us to create a system of
interacting objects. Each object in the system is a member of a certain class. These
classes specify what types of data the object can hold and what methods can be
invoked on it. The data in each object can be in a different state from other objects of
the same class, and each object may react to method calls differently because of the
differences in state.

Object-oriented analysis and design is all about figuring out what those objects are
and how they should interact. The next section describes principles that can be used
to make those interactions as simple and intuitive as possible.

Hiding details and creating the public
interface

The key purpose of modeling an object in object-oriented design is to determine
what the public interface of that object will be. The interface is the collection of
attributes and methods that other objects can use to interact with that object. They
do not need, and are often not allowed, to access the internal workings of the object.
A common real-world example is the television. Our interface to the television is the
remote control. Each button on the remote control represents a method that can be
called on the television object. When we, as the calling object, access these methods,
we do not know or care if the television is getting its signal from an antenna, a cable
connection, or a satellite dish. We don't care what electronic signals are being sent
to adjust the volume, or whether that volume is being output to speakers or a set of
headphones. If we open the television to access the internal workings, for example
to split the output signal to both external speakers and a set of headphones, we will
void the warranty.

[14]

Chapter 1

This process of hiding the implementation, or functional details, of an object is
suitably called information hiding. It is also sometimes referred to as encapsulation,
but encapsulation is actually a more all-encompassing term. Encapsulated data is not
necessarily hidden. Encapsulation is, literally, creating a capsule, so think of creating
a time capsule. If you put a bunch of information into a time capsule, lock and bury
it, it is both encapsulated and the information is hidden. On the other hand, if the
time capsule has not been buried and is unlocked or made of clear plastic, the items
inside it are still encapsulated, but there is no information hiding.

The distinction between encapsulation and information hiding is largely
irrelevant, especially at the design level. Many practical references use the terms
interchangeably. As Python programmers, we don't actually have or need true
information hiding, (we'll discuss the reasons for this in Chapter 2) so the more
encompassing definition for encapsulation is suitable.

The public interface, however, is very important. It needs to be carefully designed as
it is difficult to change it in the future. Changing the interface will break any client
objects that are calling it. We can change the internals all we like, for example, to
make it more efficient, or to access data over the network as well as locally, and the
client objects will still be able to talk to it, unmodified, using the public interface.

On the other hand, if we change the interface, by changing attribute names that are
publicly accessed or by altering the order or types of arguments that a method can
accept, all client objects will also have to be modified.

Remember, program objects represent real objects, but they are not real objects. They
are models. One of the greatest gifts of modeling is the ability to ignore details that
are irrelevant. A model car may look like a real 1956 Thunderbird on the outside, but
it doesn't run and the driveshaft doesn't turn, as these details are overly complex and
irrelevant to the youngster assembling the model. The model is an abstraction of a
real concept.

[15]

Object-oriented Design

Abstraction is another object-oriented buzzword that ties in with encapsulation
and information hiding. Simply put, abstraction means dealing with the level of
detail that is most appropriate to a given task. It is the process of extracting a public
interface from the inner details. A driver of a car needs to interact with steering,

gas pedal, and brakes. The workings of the motor, drive train, and brake subsystem
don't matter to the driver. A mechanic, on the other hand works at a different level
of abstraction, tuning the engine and bleeding the breaks. Here's an example of two
abstraction levels for a car:

Car

) +brakes
drivers » +gas_pedal

+steer()
+change_gears()
+apply_brake()

car

fixes » +disc_brakes
+fuel_injected o
+automatic_transmission
+adjust_brake()
+change_oil()

Now we have several new terms that refer to similar concepts. Condensing all this
jargon into a single sentence, abstraction is the process of encapsulating information
with separate public and private interfaces. The private interfaces can be subject to
information hiding.

The important thing to bring from all these definitions is to make our models
understandable to the other objects that have to interact with them. This means
paying careful attention to small details. Ensure methods and properties have
sensible names. When analyzing a system, objects typically represent nouns in the
original problem, while methods are normally verbs. Attributes can often be picked
up as adjectives, although if the attribute refers to another object that is part of the
current object, it will still likely be a noun. Name classes, attributes, and methods
accordingly. Don't try to model objects or actions that might be useful in the future.
Model exactly those tasks that the system needs to perform and the design will
naturally gravitate towards one that has an appropriate level of abstraction. This

is not to say we should not think about possible future design modifications. Our
designs should be open ended so that future requirements can be satisfied. However,
when abstracting interfaces, try to model exactly what needs to be modeled and
nothing more.

[16]

Chapter 1

When designing the interface, try placing yourself in the object's shoes and imagine
that the object has a strong preference for privacy. Don't let other objects have access
to data about you unless you feel it is in your best interest for them to have it. Don't
give them an interface to force you to perform a specific task unless you are certain
you want them to be able to do that to you.

This is also a good practice for ensuring privacy on your social networking accounts!

Composition and inheritance

So far, we've learned to design systems as a group of interacting objects, where each
interaction is viewing the objects involved at an appropriate level of abstraction. But
we don't know yet how to create those levels of abstraction. There are a variety of
ways to do this; we'll discuss some advanced design patterns in Chapter 8 and Chapter
9. But even most design patterns rely on two basic principles known as composition
and inheritance.

Composition is the act of collecting together several objects to compose a new one.
Composition is usually a good choice when one object is part of another object.
We've already seen a first hint of composition in the mechanic example. A car is
composed of an engine, transmission, starter, headlights, and windshield, among
numerous other parts. The engine, in turn, is composed of pistons, a crank shaft, and
valves. In this example, composition is a good way to provide levels of abstraction.
The car object can provide the interface required by a driver, while also providing
access to its component parts, which offers a deeper level of abstraction suitable for
a mechanic. Those component parts can, of course, be further broken down if the
mechanic needs more information to diagnose a problem or tune the engine.

This is a common first example of composition, bit it's not a very good one when

it comes to designing computer systems. Physical objects are easy to break into
component objects. People have been doing it at least since the ancient Greeks
originally postulated that atoms were the smallest unit of matter (they, of course,
didn't have access to particle accelerators). Computer systems are generally less
complicated than physical objects, yet identifying the component objects in such
systems does not happen as naturally. The objects in an object-oriented system
occasionally represent physical objects like people, books, or telephones. More often,
however, they represent abstract ideas. People have names, books have titles, and
telephones are used to make calls. Calls, titles, accounts, names, appointments, and
payments are not usually considered objects in the physical world, but they are all
frequently modeled components in computer systems.

[17]

Object-oriented Design

Let's try modeling a more computer-oriented example to see composition in action.
We'll be looking at the design of a computerized chess game. This was a very
popular pastime among academics in the '80s and '90s. People were predicting

that computers would one day be able to defeat a human chess master. When

this happened in 1997 (IBM's Deep Blue defeated world chess champion, Gary
Kasparov), interest in the problem waned, although there are still contests between
computer and human chess players, and the program has not yet been written that
can defeat a human chess master 100% of the time.

As a basic, high-level analysis: a game of chess is played between two players, using
a chess set featuring a board containing sixty-four positions in an 8x8 grid. The board
can have two sets of sixteen pieces that can be moved, in alternating turns by the
two players in different ways. Each piece can take other pieces. The board will be
required to draw itself on the computer screen after each turn.

I've identified some of the possible objects in the description using italics, and a few
key methods using bold. This is a common first step in turning an object-oriented
analysis into a design. At this point, to emphasize composition, we'll focus on the
board, without worrying too much about the players or the different types of pieces.

Let's start at the highest level of abstraction possible. We have two players
interacting with a chess set by taking turns making moves.

make move

]

==

player 1 player 2

| make move

What is that? It doesn't quite look like our earlier class diagrams. That's because it
isn't a class diagram! This is an object diagram, also called an instance diagram. It
describes the system at a specific state in time, and is describing specific instances of
objects, not the interaction between classes. Remember, both players are members of
the same class, so the class diagram looks a little different:

| Player | | chess Set |

|2 Make Move » 1

[18]

Chapter 1

The diagram shows that exactly two players can interact with one chess set. It also
indicates that any one player can be playing with only one chess set at a time.

But we're discussing composition, not UML, so let's think about what the Chess
Set is composed of. We don't care what the player is composed of at this time. We
can assume that the player has a heart and brain, among other organs, but these are
irrelevant to our model. Indeed, there is nothing stopping said player from being
Deep Blue itself, which has neither a heart nor brain.

The chess set, then, is composed of a board and thirty-two pieces. The board is
further comprised of sixty-four positions. You could argue that pieces are not part of
the chess set because you could replace the pieces in a chess set with a different set
of pieces. While this is unlikely or impossible in a computerized version of chess, it
introduces us to aggregation. Aggregation is almost exactly like composition. The
difference is that aggregate objects can exist independently. It would be impossible
for a position to be associated with a different chess board, so we say the board is
composed of positions. But the pieces, which might exist independently of the chess
set, are said to be in an aggregate relationship with that set.

Another way to differentiate between aggregation and composition is to think about
the lifespan of the object. If the composite (outside) object controls when the related
(inside) objects are created and destroyed, composition is most suitable. If the related
object is created independently of the composite object, or can outlast that object,

an aggregate relationship makes more sense. Also keep in mind that composition

is aggregation; aggregation is simply a more general form of composition. Any
composite relationship is also an aggregate relationship, but not vice versa.

Let's describe our current chess set composition and add some attributes to the
objects to hold the composite relationships:

Position
2 Make Move > +chess_board: Board
1 64
1 Chess Set 1
B ; . 1
+pieces: list
+board: Board Board
Piece 32 1

+chess_set: ChessSet
+positions: Position

+chess_set: ChessSet

[19]

Object-oriented Design

The composition relationship is represented in UML as a solid diamond. The hollow
diamond represents the aggregate relationship. You'll notice that the board and
pieces are stored as part of the chess set in exactly the same way a reference to them
is stored as an attribute on the chess set. This shows that once again, in practice,

the distinction between aggregation and composition is often irrelevant once you
get past the design stage. When implemented, they behave in much the same way.
However, it can help to differentiate between the two when your team is discussing
how the different objects interact. Often you can treat them as the same thing, but
when you need to distinguish between them, it's great to know the difference (this is
abstraction at work).

Inheritance

We have discussed three types of relationships between objects: association,
composition, and aggregation. But we have not fully specified our chess set, and
these tools don't seem to give us all the power we need. We discussed the possibility
that a player might be a human or it might be a piece of software featuring artificial
intelligence. It doesn't seem right to say that a Player is associated with a human, or
that the artificial intelligence implementation is part of the Player object. What we
really need is the ability to say that "Deep Blue is a player" or that "Gary Kasparov

is a player".

The is a relationship is formed by inheritance. Inheritance is the most famous,
well-known, and over-used relationship in object-oriented programming.
Inheritance is sort of like a family tree. My grandfather's last name was Phillips and
my father inherited that name. I inherited it from him (along with blue eyes and a
penchant for writing). In object-oriented programming, instead of inheriting features
and behaviors from a person, one class can inherit attributes and methods from
another class.

For example, there are thirty-two chess pieces in our chess set, but there are only
six different types of pieces (pawns, rooks, bishops, knights, king, and queen), each
of which behaves differently when it is moved. All of these classes of piece have
properties, like color and the chess set they are part of, but they also have unique
shapes when drawn on the chess board, and make different moves. See how the six
types of pieces can inherit from a Piece class:

[20]

Chapter 1

Rook Pawn
+shape +shape
+move(board) +move(board)

Piece
™| +chess_set: ChessSet
Bishop +color Queen
+shape T +shape
+move(board) | | +move(board)
King Knight
+shape +shape
+move(board) +move(board)

The hollow arrows, of course, indicate that the individual classes of pieces inherit
from the Piece class. All the subtypes automatically have a chess_set and color
attribute inherited from the base class. Each piece provides a different shape
property (to be drawn on the screen when rendering the board), and a different
move method to move the piece to a new position on the board at each turn.

We actually know that all subclasses of the Piece class need to have a move method,
otherwise when the board tries to move the piece it will get confused. It is possible
we want to create a new version of the game of chess that has one additional piece
(the wizard). Our current design would allow us to design this piece without

giving it a move method. The board would then choke when it asked the piece

to move itself.

We can implement this by creating a dummy move method on the Piece class. The
subclasses can then override this method with a more specific implementation. The
default implementation might, for example, pop up an error message that says, That
piece cannot be moved. Overriding methods in subtypes allows very powerful
object-oriented systems to be developed. For example, if we wanted to implement a
player class with artificial intelligence, we might provide a calculate move method
that takes a Board object and decides which piece to move where. A very basic class
might randomly choose a piece and direction and move it. We could then override
this method in a subclass with the Deep Blue implementation. The first class would
be suitable for play against a raw beginner, the latter would challenge a grand
master. The important thing is that other methods on the class, such as the ones that
inform the board as to which move was chosen would not need to be changed; this
implementation can be shared between the two classes.

[21]

Object-oriented Design

In the case of chess pieces, it doesn't really make sense to provide a default
implementation of the move method. All we need to do is specify that the move
method is required in any subclasses. This can be done by making Piece an abstract
class with the move method declared abstract. Abstract methods basically say "We
need this method in a subclass, but we are declining to specify an implementation in
this class."

Indeed, it is possible to make a class that does not implement any methods at all. Such
a class would simply tell us what the class should do, but provides absolutely no
advice on how to do it. In object-oriented parlance, such classes are called interfaces.

Inheritance provides abstraction

Now it's time for another long buzzword. Polymorphism is the ability to treat a class
differently depending on which subclass is implemented. We've already seen it in
action with the pieces system we've described. If we took the design a bit further,
we'd probably see that the Board object can accept a move from the player and call
the move function on the piece. The board need not ever know what type of piece it
is dealing with. All it has to do is call the move method and the proper subclass will
take care of moving it as a Knight or a Pawn.

Polymorphism is pretty cool, but it is a word that is rarely used in Python
programming. Python goes an extra step past allowing a subclass of an object to be
treated like a parent class. A board implemented in Python could take any object
that has a move method, whether it is a Bishop piece, a car, or a duck. When move is
called, the Bishop will move diagonally on the board, the car will drive someplace,
and the duck will swim or fly, depending on its mood.

This sort of polymorphism in Python is typically referred to as duck typing: "If it
walks like a duck or swims like a duck, it's a duck". We don't care if it really is a duck
(inheritance), only that it swims or walks. Geese and swans might easily be able to
provide the duck-like behavior we are looking for. This allows future designers to
create new types of birds without actually specifying an inheritance hierarchy for
aquatic birds. It also allows them to create completely different drop-in behaviors
that the original designers never planned for. For example, future designers might
be able to make a walking, swimming penguin that works with the same interface
without ever suggesting that penguins are ducks.

[22]

Chapter 1

Multiple inheritance

When we think of inheritance in our own family tree, we can see that we inherit
features from more than just one parent. When strangers tell a proud mother that her
son has, "his fathers eyes", she will typically respond along the lines of, "yes, but he
got my nose".

Object-oriented design can also feature such multiple inheritance, which allows a
subclass to inherit functionality from multiple parent classes. In practice, multiple
inheritance can be tricky business, and some programming languages, (most notably,
Java) strictly prohibit it. But multiple inheritance can have its uses. Most often, it

can be used to create objects that have two distinct sets of behaviors. For example,

an object designed to connect to a scanner and send a fax of the scanned document
might be created by inheriting from two separate scanner and faxer objects.

As long as two classes have distinct interfaces, it is not normally harmful for a
subclass to inherit from both of them. But it gets messy if we inherit from two classes
that provide overlapping interfaces. For example, if we have a motorcycle class that
has a move method, and a boat class also featuring a move method, and we want

to merge them into the ultimate amphibious vehicle, how does the resulting class
know what to do when we call move? At the design level, this needs to be explained,
and at the implementation level, each programming language has different ways of
deciding which parent class's method is called, or in what order.

Often, the best way to deal with it is to avoid it. If you have a design showing up like
this, you're probably doing it wrong. Take a step back, analyze the system again, and
see if you can remove the multiple inheritance relationship in favor of some other
association or composite design.

Inheritance is a very powerful tool for extending behavior. It is also one of the most
exciting advancements of object-oriented design over earlier paradigms. Therefore,
it is often the first tool that object-oriented programmers reach for. However, it

is important to recognize that owning a hammer does not turn screws into nails.
Inheritance is the perfect solution for obvious is a relationships but it can be abused.
Programmers often use inheritance to share code between two kinds of objects

that are only distantly related, with no is a relationship in sight. While this is not
necessarily a bad design, it is a terrific opportunity to ask just why they decided to
design it that way, and if a different relationship or design pattern would have been
more suitable.

[23]

Object-oriented Design

Case study

Let's tie all our new object-oriented knowledge together by going through a few
iterations of object-oriented design on a somewhat real-world example. The system
we'll be modeling is a library catalog. Libraries have been tracking their inventory for
centuries, originally using card catalogs, and, more recently, electronic inventories.
Modern libraries have web-based catalogs that we can query from our home.

Let's start with an analysis. The local librarian has asked us to write a new card
catalog program because their ancient DOS based program is ugly and out of date.
That doesn't give us much detail, but before we start asking for more information,
let's consider what we already know about library catalogs:

Catalogs contain lists of books. People search them to find books on certain subjects,
with specific titles, or by a particular author. Books can be uniquely identified by an
International Standard Book Number (ISBN). Each book has a Dewey Decimal
System (DDS) number assigned to help find it on a particular shelf.

This simple analysis tells us some of the obvious objects in the system. We quickly
identify Book as the most important object, with several attributes already mentioned,
such as author, title, subject, ISBN, and DDS number, and catalog as a sort of
manager for books.

We also notice a few other objects that may or may not need to be modeled in

the system. For cataloging purposes, all we need to search a book by author is an
author_name attribute on the book. But authors are also objects, and we might
want to store some other data about the author. As we ponder this, we might
remember that some books have multiple authors. Suddenly, the idea of having a
single author_name attribute on objects seems a bit silly. A list of authors associated
with each book is clearly a better idea. The relationship between author and book
is clearly association, since you would never say "book is an author" (it's not
inheritance), and saying "book has an author", though grammatically correct, does
not imply that authors are part of books (it's not aggregation). Indeed, any one
author may be associated with multiple books.

We should also pay attention to the noun (nouns are always good candidates for
objects) shelf. Is a shelf an object that needs to be modeled in a cataloging system?
How do we identify an individual shelf. What happens if a book is stored at the end
of one shelf, and later moved to the beginning of the next shelf because another book
was inserted in the previous shelf?

DDS was designed to help locate physical books in a library. As such, storing a
DDS attribute with the book should be enough to locate it, regardless of which shelf
it is stored on. So we can, at least for the moment, remove shelf from our list of
contending objects.

[24]

Chapter 1

Another questionable object in the system is the user. Do we need to know anything
about a specific user? Their name, address, or list of overdue books? So far the
librarian has told us only that they want a catalog; they said nothing about tracking
subscriptions or overdue notices. In the back of our minds, we also note that authors
and users are both specific kinds of people; there might be a useful inheritance
relationship here in the future.

For cataloging purposes, we decide we don't need to identify the user, for now. We
can assume that a user will be searching the catalog, but we don't have to actively
model them in the system, beyond providing an interface that allows them to search.

We have identified a few attributes on the book, but what properties does a catalog
have? Does any one library have more than one catalog? Do we need to uniquely
identify them? Obviously, the catalog has to have a list of the books it contains,
somehow, but this list is probably not part of the public interface.

What about behaviors? The catalog clearly needs a search method, possibly separate
ones for authors, titles, and subjects. Are there any behaviors on books? Would it
need a preview method? Or could preview be identified by a first pages attribute,
instead of a method?

The questions in the preceding discussion are all part of the object-oriented analysis
phase. But intermixed with the questions, we have already identified a few key
objects that are part of the design. Indeed, what you have just seen is several micro-
iterations between analysis and design. Likely, these iterations would all occur in
an initial meeting with the librarian. Before this meeting, however, we can already
sketch out a most basic design for the objects we have concretely identified:

Catalog
+Search()
Book
Author +ISBN
+Name +Authors
+Title
+Subject
+DDS number

[25]

Object-oriented Design

Armed with this basic diagram and a pencil to interactively improve it, we meet

up with the librarian. They tell us that this is a good start, but libraries don't serve
only books, they also have DVDs, magazines, and CDs, none of which have an ISBN
or DDS number. All of these types of items can be uniquely identified by a UPC
number, though. We remind the librarian that they have to find the items on the
shelf, and these items probably aren't organized by UPC. The librarian explains that
each type is organized in a different way. The CDs are mostly audio books and they
only have a couple dozen in stock, so they are organized by the author's last name.
DVDs are divided into genre and further organized by title. Magazines are organized
by title and then refined by volume and issue number. Books are, as we had guessed,
organized by DDS number.

With no previous object-oriented design experience, we might consider adding
separate lists of DVDs, CDs, magazines, and books to our catalog, and search each
one in turn. The trouble is, except for certain extended attributes, and identifying the
physical location of the item, these items all behave in much the same. This is a job
for inheritance! We quickly update our UML diagram:

Libraryltem

+Title
+UPC
+Subject

*

Catalog |1
+Search()

+Locate()

i

[[[|
Book Magazine DVD CcDh

Author +ISBN +Volume +Actors +Artist
+Name L_| +Authors +lssue +Director
+Title +Genre
+Subject
+DDS number

The librarian understands the gist of our sketched diagram, but is a bit confused
by the locate functionality. We explain using a specific use case where the user is
searching for the word "bunnies". The user first sends a search request to the catalog.
The catalog queries its internal list of items and finds a book and a DVD with
"bunnies" in the title. At this point, the catalog doesn't care if it is holding a DVD,
book, CD or magazine; all items are the same, as far as the catalog is concerned.
But the user wants to know how to find the physical items, so the catalog would be
remiss if it simply returned a list of titles. So it calls the locate method on the two
items it has uncovered. The book's locate method returns a DDS number that can
be used to find the shelf holding the book. The DVD is located by returning the
genre and title of the DVD. The user can then visit the DVD section, find the
section containing that genre, and find the specific DVD as sorted by title.

[26]

Chapter 1

As we explain, we sketch a UML sequence diagram explaining how the various
objects are communicating;:

% | Catal0g| | Bunnies Book | | Bunnies DVD

{ 1
»
@
®
(o]
>0

1
1
1
1
1
| |
: Locate !
: 1
1 1
| .
: *€---------- T :
| DDS Number 1
1 1
1 w !
: Locate
1
|
: et Tttt T
h Genre, Title
1
Results

Where class diagrams describe the relationships between classes, sequence diagrams
describe specific sequences of messages passed between objects. The dashed line
hanging from each object is a lifeline describing the lifetime of the object. The wider
boxes on each lifeline represent active processing in that object (where there's no box,
the object is basically sitting idle, waiting for something to happen). The horizontal
arrows between the lifelines indicate specific messages. The solid arrows represent
methods being called, while the dashed arrows with solid heads represent the
method return values. The half arrowheads indicate asynchronous messages sent to
or from an object. An asynchronous message typically means the first object calls a
method on the second object which returns immediately. After some processing, the
second object calls a method on the first object to give it a value. This is in contrast
to normal method calls, which do the processing in the method, and return a

value immediately.

[27]

Object-oriented Design

Sequence diagrams, like all UML diagrams, are best used when they are needed.
There is no point in drawing a UML diagram for the sake of drawing a diagram.
But when you need to communicate a series of interactions between two objects,
the sequence diagram is a very useful tool.

Unfortunately, our class diagram so far is still a messy design. We notice that actors
on DVDs and artists on CDs are all types of people, but are being treated differently
from the book authors. The librarian also reminds us that most of their CDs are
audio books, which have authors instead of artists.

How can we deal with different kinds of people that contribute to a title? An obvious
implementation is to create a Person class with the person's name and other relevant
details and then create subclasses of this for the artists, authors, and actors. But is
inheritance really necessary here? For searching and cataloging purposes, we don't
really care that acting and writing are two very different activities. If we were doing
an economic simulation, it would make sense to give separate actor and author
classes different calculate_income and perform job methods, but for cataloging
purposes, it is probably enough to know how the person contributed to the item.

We recognize that all items have one or more Contributor objects, so we move the
author relationship from the book to its parent class:

Libraryltem *| Contributor
Catalog |1 +Title « +Name
*
+Search(| L TUPC
+Subject
+Contributors
+Locate()
| [
Book
+ISBN DVD Magazine
+Title T Genre
+Subject +Volume
+DDS number +lssue

The multiplicity of the Contributor/LibrarylItem relationship is many-to-many, as
indicated by the * at each end of the relationship. Any one library item might have
more than one contributor (for example, several actors and a director on DVD). And
many authors write many books, so they would be attached to multiple library items.

This little change, while it looks a bit cleaner and simpler has lost some vital
information. We can still tell who contributed to a specific library item, but we don't
know how they contributed. Were they the director or an actor? Did they write the
audio book, or were they the voice that narrated the book?

[28]

Chapter 1

It would be nice if we could just add a contributor_type attribute on the
Contributor class, but this will fall apart when dealing with multi-talented people
who have both authored books and directed movies.

One option is to add attributes to each of our LibraryItem subclasses that hold the
information we need, such as Author on Book, or Artist on CD, and then make the
relationship to those properties all point to the Contributor class. The problem with
this is that we lose a lot of polymorphic elegance. If we want to list the contributors
to an item, we have to look for specific attributes on that item, such as Authors

or Actors. We can alleviate this by adding a GetContributors method on the
Libraryltem class that subclasses can override. Then the catalog never has to know
what attributes the objects are querying; we've abstracted the public interface:

Libraryltem
Catalog |1 +Title

+Search() __* Igzlc)ject

+Contributors

+Locate()
+GetContributors()

i

I l—l_l |

Book : D
DVD Magazine
+ISBN +Artist
+Title +Genre +Volume .
+Subject +Actors +Issue
+DDS number | | *Directors +Editors
+Authors * *
*
*
*1 Contributor |-
+Name

Just looking at this class diagram, it feels like we are doing something wrong. It is
bulky and fragile. It may do everything we need, but it feels like it will be hard to
maintain or extend. There are too many relationships, and too many classes would
be affected by modifications to any one class. It looks like spaghetti and meatballs.

[29]

Object-oriented Design

Now that we've explored inheritance as an option, and found it wanting, we might
look back at our previous composition-based diagram, where Contributor was
attached directly to LibraryItem. With some thought, we can see that we actually
only need to add one more relationship to a brand-new class to identify the type of
contributor. This is an important step in object-oriented design. We are now adding a
class to the design that is intended to support the other objects, rather than modeling
any part of the initial requirements. We are refactoring the design to facilitate the
objects in the system, rather than objects in real life. Refactoring is an essential
process in the maintenance of a program or design. The goal of refactoring is to
improve the design by moving code around, removing duplicate code or complex
relationships in favor of simpler, more elegant designs.

This new class is composed of a Contributor and an extra attribute identifying
the type of contribution the person has made to the given Libraryltem. There can
be many such contributions to a particular Libraryltem, and one contributor can
contribute in the same way to different items. The diagram communicates this
design very well:

Libraryitem | ,7* ContributorWithType
.| TTitle +Contributor
+UPC +Type
+Subject /
Catalog |1 +Contributors
+Search() +Locate() Contributor
[N +Name
Book
+ISBN
+Title Magazine
+Subject DVD
+Volume
+DDS number I_CD_I +Genre +lssue

At first, this composition relationship looks less natural than the inheritance-

based relationships. But it has the advantage of allowing us to add new types of
contributions without adding a new class to the design. Inheritance is most useful
when the subclasses have some kind of specialization. Specialization is creating

or changing attributes or behaviors on the subclass to make it somehow different
from the parent class. It seems silly to create a bunch of empty classes solely for
identifying different types of objects (this attitude is less prevalent among Java and
other "everything is an object" programmers, but it is common among more practical
Python designers). If we look at the inheritance version of the diagram, we can see a
bunch of subclasses that don't actually do anything:

[30]

Chapter 1

Libraryltem

+Title
+UPC
+Subject

*

Catalog |1
+Search()

+Locate()

f

I I I |
Book Magazine DVD cD

Author +ISBN +\Volume +Actors +Artist
+Name | +Authors +lIssue +Director
+Title +Genre
+Subject
+DDS number

Sometimes it is important to recognize when not to use object-oriented principles.
This example of when not to use inheritance is a good reminder that objects are just
tools, and not rules.

Exercises

This is a practical book, not a textbook. As such, I'm not about to assign you a bunch
of fake object-oriented analysis problems to create designs for. Instead, I want to give
you some things to think about that you can apply to your own projects. If you have
previous object-oriented experience, you won't need to put much effort into these.
But they are useful mental exercises if you've been using Python for a while but
never really cared about all that class stuff.

First, think about a recent programming project you've completed. Identify the most
prominent object in the design. Try to think of as many attributes for this object as
possible. Did it have: Color? Weight? Size? Profit? Cost? Name? ID number? Price?
Style? Think about the attribute types. Were they primitives or classes? Were some
of those attributes actually behaviors in disguise? Sometimes what looks like data

is actually calculated from other data on the object, and you can use a method to

do those calculations. What other methods or behaviors did the object have?

What objects called those methods. What kinds of relationships did they have

to this object?

[31]

Object-oriented Design

Now think about an upcoming project. It doesn't matter what the project is; it might
be a fun free-time project or a multi-million dollar contract. It doesn't have to be a
complete application; it could just be one subsystem. Perform a basic object-oriented
analysis. Identify the requirements and the interacting objects. Sketch out a class
diagram featuring the very highest level of abstraction on that system. Identify

the major interacting objects. Identify minor supporting objects. Go into detail

for the attributes and methods of some of the most interesting ones. Take different
objects to different levels of abstraction. Look for places you can use inheritance

or composition. Look for places you should avoid inheritance.

The goal is not to design a system (although you're certainly welcome to do so if
inclination meets both ambition and available time). The goal is to think about
object-oriented designs. Focusing on projects that you have worked on or are
expecting to work on in the future simply makes it real.

Now visit your favorite search engine and look up some tutorials on UML. There are
dozens, so find the one that suits your preferred method of study. Sketch some class
diagrams or a sequence diagram for the objects you identified earlier. Don't get too
hung up on memorizing the syntax (after all, if it is important, you can always look it
up again), just get a feel for the language. Something will stay lodged in your brain,
and it can make communicating a bit easier if you can quickly sketch a diagram for
your next OOP discussion.

Summary

In this chapter, we took a whirlwind tour through the terminology of the object-
oriented paradigm, focusing on object-oriented design. We learned how to separate
different objects into a taxonomy of different classes and to describe the attributes
and behaviors of those objects via the class interface. In particular, we covered:

e C(lasses and objects

e Abstraction, encapsulation, and information hiding

¢ Designing a public interface

e Object relations: association, composition, and inheritance

e Basic UML syntax for fun and communication

In the next chapter, we'll explore how to implement classes and methods in Python.

[32]

Obijects in Python

So, we now have a design in hand and are ready to turn that design into a working
program! Of course, it doesn't usually happen that way, but this book is about
programming in Python. We'll be seeing examples and hints for good software
design throughout the book, but our focus is object-oriented programming. So let's
have a look at the Python syntax that allows us to create object-oriented software.

After completing this chapter we will understand:

e How to create classes and instantiate objects in Python
¢ How to add attributes and behaviors to Python objects
e How to organize classes into packages and modules

e How to suggest people don't clobber our data

Creating Python classes

We don't have to write much Python code to realize that Python is a very "clean"
language. When we want to do something, we just do it, without having to go
through a lot of setup. The ubiquitous, "hello world" in Python, as you've likely
seen, is only one line.

Similarly, the simplest class in Python 3 looks like this:

class MyFirstClass:
pass

There's our first object-oriented program! The class definition starts with the class
keyword. This is followed by a name (of our choice) identifying the class, and is
terminated with a colon.

Objects in Python

The class name must follow standard Python variable naming rules
. (must start with a letter or underscore, can only be comprised of letters,
a underscores, or numbers). In addition, the Python style guide (search
K the web for "PEP 8"), recommends that classes should be named using
CamelCase notation (start with a capital letter, any subsequent words
should also start with a capital).

The class definition line is followed by the class contents, indented. As with other

Python constructs, indentation is used to delimit the classes, rather than braces or

brackets as many other languages use. Use four spaces for indentation unless you

have a compelling reason not to (such as fitting in with somebody else's code that

uses tabs for indents). Any decent programming editor can be configured to insert
four spaces whenever the Tab key is pressed.

Since our first class doesn't actually do anything, we simply use the pass keyword
on the second line to indicate that no further action needs to be taken.

We might think there isn't much we can do with this most basic class, but it does
allow us to instantiate objects of that class. We can load the class into the Python 3
interpreter so we can play with it interactively. To do this, save the class definition
mentioned earlier into a file named first class.py and then run the command
python -i first_class.py. The -i argument tells Python to "run the code and then
drop to the interactive interpreter". The following interpreter session demonstrates
basic interaction with this class:

>>> a = MyFirstClass()

>>> b = MyFirstClass()

>>> print(a)

<_ main_ .MyFirstClass object at 0xb7b7faec>
>>> print (b)

<_ main_ .MyFirstClass object at 0xb7b7fbac>

>>>

This code instantiates two objects from the new class, named a and b. Creating an
instance of a class is a simple matter of typing the class name followed by a pair

of parentheses. It looks much like a normal function call, but Python knows we're
"calling" a class and not a function, so it understands that its job is to create a new
object. When printed, the two objects tell us what class they are and what memory
address they live at. Memory addresses aren't used much in Python code, but here,
it demonstrates that there are two distinctly different objects involved.

[34]

Chapter 2

Adding attributes

Now, we have a basic class, but it's fairly useless. It doesn't contain any data, and it
doesn't do anything. What do we have to do to assign an attribute to a given object?

It turns out that we don't have to do anything special in the class definition. We can
set arbitrary attributes on an instantiated object using the dot notation:

class Point:
pass

pl = Point ()
p2 = Point ()

pl.x =5
pl.y = 4
p2.x = 3
p2.y = 6

print (pl.x, pl.y)
print (p2.x, p2.y)

If we run this code, the two print statements at the end tell us the new attribute
values on the two objects:

5 4
3 6

This code creates an empty Point class with no data or behaviors. Then it creates
two instances of that class and assigns each of those instances x and y coordinates to
identify a point in two dimensions. All we need to do to assign a value to an attribute
on an object is use the syntax <object>.<attribute> = <value>. This is sometimes
referred to as dot notation. The value can be anything: a Python primitive, a

built-in data type, another object. It can even be a function or another class!

Making it do something

Now, having objects with attributes is great, but object-oriented programming is
really about the interaction between objects. We're interested in invoking actions that
cause things to happen to those attributes. It is time to add behaviors to our classes.

[35]

Objects in Python

Let's model a couple of actions on our pPoint class. We can start with a method
called reset that moves the point to the origin (the origin is the point where x
and y are both zero). This is a good introductory action because it doesn't require
any parameters:

class Point:
def reset (self):

self.x = 0
self.y = 0
p = Point ()

p.reset ()
print(p.x, p.y)

That print statement shows us the two zeros on the attributes:

0o

A method in Python is identical to defining a function. It starts with the keyword
def followed by a space and the name of the method. This is followed by a set

of parentheses containing the parameter list (we'll discuss the self parameter in

just a moment), and terminated with a colon. The next line is indented to contain
the statements inside the method. These statements can be arbitrary Python code
operating on the object itself and any parameters passed in as the method sees fit.

The one difference between methods and normal functions is that all methods

have one required argument. This argument is conventionally named self; I've
never seen a programmer use any other name for this variable (convention is a very
powerful thing). There's nothing stopping you, however, from calling it this or
even Martha.

The self argument to a method is simply a reference to the object that the method
is being invoked on. We can access attributes and methods of that object as if it were
any other object. This is exactly what we do inside the reset method when we set
the x and y attributes of the self object.

Notice that when we call the p. reset () method, we do not have to pass the self
argument into it. Python automatically takes care of this for us. It knows we're
calling a method on the p object, so it automatically passes that object to the method.

However, the method really is just a function that happens to be on a class. Instead of
calling the method on the object, we could invoke the function on the class, explicitly
passing our object as the self argument:

p = Point ()
Point.reset (p)
print(p.x, p.y)

[36]

Chapter 2

The output is the same as the previous example because, internally, the exact same
process has occurred.

What happens if we forget to include the self argument in our class definition?
Python will bail with an error message:

>>> class Point:
def reset():

pass

>>> p = Point()

>>> p.reset()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: reset() takes no arguments (1 given)

The error message is not as clear as it could be ("You silly fool, you forgot the self
argument" would be more informative). Just remember that when you see an error
message that indicates missing arguments, the first thing to check is whether you
forgot self in the method definition.

So how do we pass multiple arguments to a method? Let's add a new method that
allows us to move a point to an arbitrary position, not just the origin. We can also
include one that accepts another Point object as input and returns the distance
between them:

import math

class Point:
def move (self, x, y):
self.x = x
self.y =y

def reset (self):
self.move (0, O0)

def calculate distance(self, other point):
return math.sqgrt (
(self.x - other point.x)**2 +
(self.y - other point.y)**2)

how to use it:
pointl = Point ()

[37]

Objects in Python

point2 = Point ()

pointl.reset ()

point2.move (5, 0)

print (point2.calculate distance (pointl))

assert (point2.calculate distance(pointl) ==
pointl.calculate distance(point2))

pointl.move (3,4)

print (pointl.calculate distance (point2))

print (pointl.calculate distance (pointl))

The print statements at the end give us the following output:

5.0
4.472135955
0.0

A lot has happened here. The class now has three methods. The move method accepts
two arguments, x and y, and sets the values on the self object, much like the old
reset method from the previous example. The old reset method now calls move,
since a reset is just a move to a specific known location.

The calculate_distance method uses the not-too-complex Pythagorean Theorem
to calculate the distance between two points. I hope you understand the math (**
means squared, and math.sgrt calculates a square root), but it's not a requirement
for our current focus: learning how to write methods.

The example code at the end shows how to call a method with arguments; simply
include the arguments inside the parentheses, and use the same dot notation to
access the method. I just picked some random positions to test the methods. The test
code calls each method and prints the results on the console. The assert function

is a simple test tool; the program will bail if the statement after assert is False (or
zero, empty, or None). In this case, we use it to ensure that the distance is the same
regardless of which point called the other point's calculate_distance method.

Initializing the object

If we don't explicitly set the x and y positions on our Point object, either using move
or by accessing them directly, we have a broken point with no real position. What
will happen when we try to access it?

[38]

Chapter 2

Well, let's just try it and see. "Try it and see" is an extremely useful tool for Python
study. Open up your interactive interpreter and type away. The following interactive
session shows what happens if we try to access a missing attribute. If you saved the
previous example as a file or are using the examples distributed with the book, you
can load it into the Python interpreter with the command python -i filename.py.

>>> point = Point()

>>> point.x = 5

>>> print (point.x)

5

>>> print (point.y)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'Point' object has no attribute 'y'

Well, at least it threw a useful exception. We'll cover exceptions in detail in Chapter
4. You've probably seen them before (especially the ubiquitous SyntaxError, which
means you typed something incorrectly!). At this point, simply be aware that it
means something went wrong.

The output is useful for debugging. In the interactive interpreter it tells us the error
occurred at line 1, which is only partially true (in an interactive session, only one line
is executed at a time). If we were running a script in a file, it would tell us the exact line
number, making it easy to find the offending code. In addition, it tells us the error is an
AttributeError, and gives a helpful message telling us what that error means.

We can catch and recover from this error, but in this case, it feels like we should have
specified some sort of default value. Perhaps every new object should be reset ()

by default or maybe it would be nice if we could force the user to tell us what those
positions should be when they create the object.

Most object-oriented programming languages have the concept of a constructor,

a special method that creates and initializes the object when it is created. Python

is a little different; it has a constructor and an initializer. Normally, the constructor
function is rarely ever used unless you're doing something exotic. So we'll start our
discussion with the initialization method.

The Python initialization method is the same as any other method, except it has a
special name: __init__ . The leading and trailing double underscores mean, "this is

a special method that the Python interpreter will treat as a special case". Never name
a function of your own with leading and trailing double underscores. It may mean
nothing to Python, but there's always the possibility that the designers of Python will
add a function that has a special purpose with that name in the future, and when
they do, your code will break.

[39]

Objects in Python

Let's start with an initialization function on our Point class that requires the user to
supply x and y coordinates when the Point object is instantiated:

class Point:
def init (self, x, y):
self .move (x, Yy)

def move (self, x, y):
self.x = x
self.y =y

def reset (self):
self.move (0, O0)

Constructing a Point
point = Point (3, 5)
print (point.x, point.y)

Now, our point can never go without a y coordinate! If we try to construct a

point without including the proper initialization parameters, it will fail with a not
enough arguments error similar to the one we received earlier when we forgot the
self argument.

What if we don't want to make those two arguments required? Well then we can use
the same syntax Python functions use to provide default arguments. The keyword
argument syntax appends an equals sign after each variable name. If the calling
object does not provide that argument, then the default argument is used instead; the
variables will still be available to the function, but they will have the values specified
in the argument list. Here's an example:

class Point:
def _ init_ (self, x=0, y=0):
self .move (x, Vy)

Most of the time, we put our initialization statementsinan __init__ function. But as
mentioned earlier, Python has a constructor in addition to its initialization function.
You may never need to use the other Python constructor, but it helps to know it
exists, so we'll cover it briefly.

The constructor function is called __new__as opposed to __init__, and accepts
exactly one argument, the class that is being constructed (it is called before the object
is constructed, so there is no self argument). It also has to return the newly created
object. This has interesting possibilities when it comes to the complicated art of
meta-programming, but is not very useful in day-to-day programming. In practice,
you will rarely, if ever, need touse __new_ ,and __ init__ will be sufficient.

[40]

Chapter 2

Explaining yourself

Python is an extremely easy-to-read programming language; some might say it

is self-documenting. However, when doing object-oriented programming, it is
important to write APl documentation that clearly summarizes what each object and
method does. Keeping documentation up-to-date is difficult; the best way to do it is
to write it right into our code.

Python supports this through the use of docstrings. Each class, function, or
method header can have a standard Python string as the first line following the
definition (the line that ends in a colon). This line should be indented the same
as the following code.

Docstrings are simply Python strings enclosed with apostrophe (') or quote (")
characters. Often, docstrings are quite long and span multiple lines (the style guide
suggests that line-length should not exceed 80 characters), which can be formatted
as multi-line strings, enclosed in matching triple apostrophe (") or triple quote

(") characters.

A docstring should clearly and concisely summarize the purpose of the class or
method it is describing. It should explain any parameters whose usage is not
immediately obvious, and is also a good place to include short examples of how to
use the API. Any caveats or problems an unsuspecting user of the API should be
aware of should also be noted.

To illustrate the use of docstrings, we will end this section with our completely
documented Point class:

import math

class Point:
'Represents a point in two-dimensional geometric coordinates'

def _ init_ (self, x=0, y=0):

'"'""Initialize the position of a new point. The x and y
coordinates can be specified. If they are not, the point
defaults to the origin.''"!

self.move (x, y)

def move (self, x, y):
"Move the point to a new location in two-dimensional space."
self.x = x
self.y =y

[41]

Objects in Python

def reset (self):
'Reset the point back to the geometric origin: 0, 0'
self.move (0, O0)

def calculate distance(self, other point):

""rCalculate the distance from this point to a second point
passed as a parameter.

This function uses the Pythagorean Theorem to calculate
the distance between the two points. The distance is returned
as a float."""

return math.sqgrt (
(self.x - other point.x)**2 +
(self.y - other point.y)**2)

Try typing or loading (remember, it's python -i filename.py) this file into the
interactive interpreter. Then enter help (Point) <enters at the Python prompt.
You should see nicely formatted documentation for the class, as shown in the
following screenshot:

=] Terminal-'dusty@cactus:—/writing/packt/Chapter2jcode o O
File Edit View Terminal Go Help
Help on class Point in module _ main__

class (builtins.object)
| Represents a point in two-dimensional geometric coordinates

Methods defined here:

(self, x=0, y=0)
Initialize the position of a new point. The x and y coordinates can
be specified. If they are not, the point defaults to the origin.

(self, other_point)
Calculate the distance from this point to a second point passed
as a parameter.

This function uses the Pythagorean Theorem to calculate the distance
between the two points. The distance is returned as a float.

Move the point to a new location in two-dimensional space.

(self)
Reset the point back to the geometric origin: 0, 0

[
[
[
[
[
[
[
[
[
|
[
[
[
| (self, x, y)
[
[
i

[42]

Chapter 2

Modules and packages

Now that we know how to create classes and instantiate objects, it is time to think
about organizing them. For small programs, we can just put all our classes into one
file and put some code at the end of the file to start them interacting. However, as
our projects grow, it can become difficult to find one class that needs to be edited
among the many classes we've defined. This is where modules come in. Modules are
simply Python files, nothing more. The single file in our small program is a module.
Two Python files are two modules. If we have two files in the same folder, we can
load a class from one module for use in the other module.

For example, if we are building an e-commerce system, we will likely be storing a
lot of data in a database. We can put all the classes and functions related to database
access into a separate file (we'll call it something sensible: database.py). Then our
other modules (for example: customer models, product information, and inventory)
can import classes from that module in order to access the database.

The import statement is used for importing modules or specific classes or functions
from modules. We've already seen an example of this in our Point class in the
previous section. We used the import statement to get Python's built-in math
module so we could use its sqrt function in our distance calculation.

Here's a concrete example. Assume we have a module called database .py that
contains a class called Database, and a second module called products . py that is
responsible for product-related queries. At this point, we don't need to think too
much about the contents of these files. What we know is that products.py needs
to instantiate the Database class from database.py so it can execute queries on the
product table in the database.

There are several variations on the import statement syntax that can be used to
access the class.

import database
db = database.Database()
Do queries on db

This version imports the database module into the products namespace

(the list of names currently accessible in a module or function), so any class or
function in the database module can be accessed using database.<something>
notation. Alternatively, we can import just the one class we need using the from...
import syntax:

from database import Database
db = Database ()
Do queries on db

[43]

Objects in Python

If, for some reason, products already has a class called Database, and we don't
want the two names to be confused, we can rename the class when used inside the
products module:

from database import Database as DB
db = DB()
Do queries on db

We can also import multiple items in one statement. If our database module also
contains a Query class, we can import both classes using:

from database import Database, Query

Some sources say that we can even import all classes and functions from the
database module using this syntax:

from database import =*

Don't do this. Every experienced Python programmer will tell you that you should
never use this syntax. They'll use obscure justifications like, "it clutters up the
namespace", which doesn't make much sense to beginners. One way to learn why
to avoid this syntax is to use it and try to understand your code two years later.
But we can save some time and two years of poorly written code with a quick
explanation now!

When we explicitly import the database class at the top of our file using from
database import Database, we can easily see where the Database class comes
from. We might use db = Database () 400 lines later in the file, and we can quickly
look at the imports to see where that Database class came from. Then if we need
clarification as to how to use the Database class, we can visit the original file (or
import the module in the interactive interpreter and use the help (database.
Database) command). However, if we use from database import * syntax, it
takes a lot longer to find where that class is located. Code maintenance becomes

a nightmare.

In addition, many editors are able to provide extra functionality, such as reliable
code completion or the ability to jump to the definition of a class if normal imports
are used. The import * syntax usually completely destroys their ability to do

this reliably.

Finally, using the import * syntax can bring unexpected objects into our local
namespace. Sure, it will import all the classes and functions defined in the module
being imported from, but it will also import any classes or modules that were
themselves imported into that file!

[44]

Chapter 2

In spite of all these warnings, you may think, "if I only use from X import * syntax
for one module, I can assume any unknown imports come from that module". This

is technically true, but it breaks down in practice. I promise that if you use this
syntax, you (or someone else trying to understand your code) will have extremely
frustrating moments of, "Where on earth can this class be coming from?" Every name
used in a module should come from a well-specified place, whether it is defined in
that module, or explicitly imported from another module. There should be no magic
variables that seem to come out of thin air. We should always be able to immediately
identify where the names in our current namespace originated.

Organizing the modules

As a project grows into a collection of more and more modules, we may find that

we want to add another level of abstraction, some kind of nested hierarchy on our
modules' levels. But we can't put modules inside modules; one file can only hold one
file, after all, and modules are nothing more than Python files.

Files, however, can go in folders and so can modules. A package is a collection of
modules in a folder. The name of the package is the name of the folder. All we need
to do to tell Python that a folder is a package and place a (normally empty) file in the
folder named __init_ .py. If we forget this file, we won't be able to import modules
from that folder.

Let's put our modules inside an ecommerce package in our working folder, which
will also contain a main.py to start the program. Let's additionally add another
package in the ecommerce package for various payment options. The folder
hierarchy will look like this:

parent directory/
main.py
ecommerce/
init .py
database.py
products.py
payments/
init .py
paypal.py
authorizenet.py

When importing modules or classes between packages, we have to be cautious about
the syntax. In Python 3, there are two ways of importing modules: absolute imports
and relative imports.

[45]

Objects in Python

Absolute imports

Absolute imports specify the complete path to the module, function, or path we
want to import. If we need access to the Product class inside the products module,
we could use any of these syntaxes to do an absolute import:

import ecommerce.products
product = ecommerce.products.Product ()

or

from ecommerce.products import Product
product = Product ()

or

from ecommerce import products
product = products.Product ()

The import statements separate packages or modules using the period as
a separator.

These statements will work from any module. We could instantiate a Product using
this syntax in main.py, in the database module, or in either of the two payment
modules. Indeed, so long as the packages are available to Python, it will be able

to import them. For example, the packages can also be installed to the Python site
packages folder, or the PYTHONPATH environment variable could be customized
to dynamically tell Python what folders to search for packages and modules it is
going to import.

So with these choices, which syntax do we choose? It depends on your personal
taste and the application at hand. If there are dozens of classes and functions inside
the products module that I want to use, I generally import the module name using
the from ecommerce import products syntax and then access the individual classes
using products. Product. If I only need one or two classes from the products
module, I import them directly using the from ecommerce.proucts import Product
syntax. I don't personally use the first syntax very often unless I have some kind of
name conflict (for example, I need to access two completely different modules called
products and I need to separate them). Do whatever you think makes your code
look more elegant.

[46]

Chapter 2

Relative imports

When working with related modules in a package, it seems kind of silly to specify
the full path; we know what our parent module is named. This is where relative
imports come in. Relative imports are basically a way of saying "find a class,
function, or module as it is positioned relative to the current module". For example, if
we are working in the products module and we want to import the Database class
from the database module "next" to it, we could use a relative import:

from .database import Database

The period in front of database says, "Use the database module inside the
current package". In this case, the current package is the package containing the
products.py file we are currently editing, that is, the ecommerce package.

If we were editing the paypal module inside the ecommerce . payments package, we
would want to say, "Use the database package inside the parent package", instead.
That is easily done with two periods:

from ..database import Database

We can use more periods to go further up the hierarchy. Of course, we can also
go down one side and back up the other. We don't have a deep enough example
hierarchy to illustrate this properly, but the following would be a valid import if
we had a ecommerce.contact package containing an email module and wanted
to import the send_mail function into our paypal module:

from ..contact.email import send mail

This import uses two periods to say, "the parent of the payments package", then uses
normal package .module syntax to go back "up" into the contact package.

Inside any one module, we can specify variables, classes, or functions. They can be

a handy way of storing global state without namespace conflicts. For example, we
have been importing the Database class into various modules and then instantiating
it, but it might make more sense to have only one database object globally available
from the database module. The database module might look like this:

class Database:
the database implementation
pass

database = Database()

[47]

Objects in Python

Then we can use any of the import methods we've discussed to access the database
object, for example:

from ecommerce.database import database

A problem with the above class is that the database object is created immediately
when the module is first imported, which is usually when the program starts up.
This isn't always ideal, since connecting to a database can take a while, slowing
down startup, or the database connection information may not yet be available.
We could delay creating the database until it is actually needed by calling an
initialize database function to create the module-level variable:

class Database:
the database implementation
pass

database = None

def initialize database() :
global database
database = Database()

The global keyword tells Python that the database variable inside initialize_
database is the module-level one we just defined. If we had not specified the
variable as global, Python would have created a new local variable that would be
discarded when the method exits, leaving the module-level value unchanged.

As these two examples illustrate, all code in a module is executed immediately at the
time it is imported. However, if it is inside a method or function, the function will

be created, but its internal code will not be executed until the function is called. This
can be a tricky thing for scripts (like the main script in our e-commerce example)

that perform execution. Often, we will write a program that does something useful,
and then later find that we want to import a function or class from that module in

a different program. But as soon as we import it, any code at the module level is
immediately executed. If we are not careful, we can end up running the first program
when we really only meant to access a couple functions inside that module.

To solve this, we should always put our startup code in a function (conventionally
called main) and only execute that function when we know we are executing as a
script, but not when our code is being imported from a different script. But how do
we know that?:

class UsefulClass:
'"'"This class might be useful to other modules.'''
pass

[48]

Chapter 2

def main() :

'"'creates a useful class and does something with it for our
module.'"!

useful = UsefulClass()
print (useful)

if name == " main ":

main ()

Every module has a _ name__ special variable (remember, Python uses double
underscores for special variables, like a class's __init method) that specifies the
name of the module when it was imported. But when the module is executed directly
with python module.py, it is never imported, so the _ name__is set to the string

" main__". Make it a policy to wrap all your scriptsinan if _ name ==
"_main__ ": test, just in case you write a function you will find useful to be
imported by other code someday.

So methods go in classes, which go in modules, which go in packages. Is that all
there is to it?

Actually, no. That is the typical order of things in a Python program, but it's not the
only possible layout. Classes can be defined anywhere. They are typically defined at
the module level, but they can also be defined inside a function or method, like so:

def format string(string, formatter=None) :

'"'"Format a string using the formatter object, which
is expected to have a format () method that accepts
a string.'''
class DefaultFormatter:

'"'"Format a string in title case.''!

def format (self, string):

return str(string) .title()

if not formatter:
formatter = DefaultFormatter ()

return formatter.format (string)

hello string = "hello world, how are you today?"
print (" input: " + hello string)
print ("output: " + format string(hello string))

[49]

Objects in Python

Output:

input: hello world, how are you today?

output: Hello World, How Are You Today?

The format_string function accepts a string and optional formatter object, and then
applies the formatter to that string. If no formatter is supplied, it creates a formatter
of its own as a local class and instantiates it. Since it is created inside the scope of

the function, this class cannot be accessed from anywhere outside of that function.
Similarly, functions can be defined inside other functions as well; in general, any
Python statement can be executed at any time. These "inner" classes and functions
are useful for "one-off" items that don't require or deserve their own scope at the
module level, or only make sense inside a single method.

Who can access my data?

Most object-oriented programming languages have a concept of "access control".
This is related to abstraction. Some attributes and methods on an object are marked
"private", meaning only that object can access them. Others are marked "protected",
meaning only that class and any subclasses have access. The rest are "public",
meaning any other object is allowed to access them.

Python doesn't do that. Python doesn't really believe in enforcing laws that might
someday get in your way. Instead, it provides unenforced guidelines and best
practices. Technically, all methods and attributes on a class are publicly available. If
we want to suggest that a method should not be used publicly, we can put a note in
docstrings indicating if a method is meant for internal use only, (preferably with an
explanation of how the public-facing API works!).

By convention, we can also prefix an attribute or method with an underscore
character: _. Most Python programmers will interpret this as, "This is an internal
variable, think three times before accessing it directly". But there is nothing stopping
them from accessing it if they think it is in their best interest to do so. Yet, if they
think so, why should we stop them? We may not have any idea what future uses
our classes may be put to.

[50]

Chapter 2

There's another thing you can do to strongly suggest that outside objects don't access
a property or method. Prefix it with a double underscore: __. This will perform name
mangling on the attribute in question. This basically means that the method can still
be called by outside objects if they really want to do it, but it requires extra work

and is a strong indicator that you think your attribute should remain private.

For example:

class SecretString:
''"'A not-at-all secure way to store a secret string.'''

def _ init_ (self, plain_string, pass_phrase):
self. plain string = plain string
self. pass phrase = pass_phrase

def decrypt (self, pass phrase):
'''Only show the string if the pass phrase is correct.'''

if pass phrase == self. pass phrase:
return self._ plain string

else:
return ''

If we load this class and test it in the interactive interpreter, we can see that it hides
the plaintext string from the outside world:

>>> secret string = SecretString("ACME: Top Secret", "antwerp")
>>> print(secret string.decrypt("antwerp"))
ACME: Top Secret
>>> print(secret string. plain text)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'SecretString' object has no attribute
'__plain text'
>>>
It looks like it works. Nobody can access our plain_text attribute without the

passphrase, so it must be safe. Before we get too excited, though, let's see how
easy it can be to hack our security:

>>> print(secret string. SecretString plain string)

ACME: Top Secret

[51]

Objects in Python

Oh No! Somebody has hacked our secret string. Good thing we checked! This is
Python name mangling at work. When we use a double underscore, the property
is prefixed with _<classname>. When methods in the class internally access the
variable, they are automatically unmangled. When external classes wish to access
it, they have to do the name mangling themselves. So name mangling does not
guarantee privacy, it only strongly recommends it. Most Python programmers
will not touch a double-underscore variable on another object unless they have
an extremely compelling reason to do so.

However, most Python programmers will not touch a single-underscore variable
without a compelling reason either. For the most part, there is no good reason to

use a name-mangled variable in Python, and doing so can cause grief. For example,
a name-mangled variable may be useful to a subclass, and it would have to do the
mangling itself. Let other objects access your hidden information if they want to, just
let them know, using a single-underscore prefix or some clear docstrings that you
think this is not a good idea.

Finally, we can import code directly from packages, as opposed to just

modules inside packages. In our earlier example, we had an ecommerce package
containing two modules named database.py and products.py. The database
module contains a db variable that is accessed from a lot of places. Wouldn't it be
convenient if this could be imported as import ecommerce.db instead of import
ecommerce.database.db?

Remember the __ init__ .py file that defines a directory as a package? That file
can contain any variables or class declarations we like, and they will be available
as part of the package. In our example, if the ecommerce/__init__ .py file
contained this line:

from .database import db

We could then access the db attribute from main.py or any other file using
this import:

from ecommerce import db

It might help to think of the __init__ .py file as if it was an ecommerce . py file if that
file were a module instead of a package. This can also be useful if you put all your
code in a single module and later decide to break it up into a package of modules.
The init__ .py file for the new package can still be the main point of contact for
other modules talking to it, but the code can be internally organized into several
different modules or subpackages.

[52]

Chapter 2

Case study

To tie it all together, let's build a simple command-line notebook application. This is
a fairly simple task, so we won't be experimenting with multiple packages. We will,
however, see common usage of classes, functions, methods, and docstrings.

Let's start with a quick analysis: Notes are short memos stored in a notebook. Each
note should record the day it was written and can have tags added for easy querying.
It should be possible to modify notes. We also need to be able to search for notes. All
of this should be done from the command-line.

The obvious object is the Note. Less obvious is a Notebook container object. Tags and
dates also seem to be objects, but we can use dates from Python's standard library
and a comma-separated string for tags. To avoid complexity at this point, let's not
define separate classes for these objects.

Note objects have attributes for the memo itself, tags, and a creation_date. Each
note will also need a unique integer id, so that users can select them in a menu
interface. Notes could have a method to modify note content and another for tags,
or we could just let the notebook access those attributes directly. To make searching
easier, we should put a match method on the Note. This method will accept a string
and can tell us if a note matches the string without accessing the attributes directly.
That way, if we want to modify the search parameters (to search tags instead of note
contents, for example, or to make the search case-insensitive), we only have to do it
in one place.

The Notebook obviously has the list of notes as an attribute. It will also need a
search method that returns a list of filtered notes.

But how do we interact with these objects? We've specified a command-line app,
which can either mean we run the program with different options to add or edit
commands, or we could have some kind of a menu that allows us to pick different
things to do to the notebook. It would be nice if we could design it so that either
interface was allowed, or we could add other interfaces such as a GUI toolkit or a
web-based interface in the future.

As a design decision, we'll implement the menu interface now, but will keep the
command-line options version in mind to ensure we design our Notebook class with
extensibility in mind.

So if we have two command-line interfaces each interacting with the Notebook, then
Notebook is going to need some methods for them to interact with. We'll need to be
able to add a new note, and modify an existing note by id, in addition to the search
method we've already discussed. The interfaces will also need to be able to list all
notes, but they can do that by accessing the notes list attribute directly.

[53]

Objects in Python

We may be missing a few details, but that gives us a really good overview of the
code we need to write. We can summarize all this in a simple class diagram:

CommandOption
Menu

Notebook
+notes: list
+search(filter:str): list
+new_note(memo, tags="")
+modify_memo(note_id,memo)
+modify tags(note id,tags)
|

*

Note

+memo
+creation_date
+tags

+match(search_filter:str): boolean

Before writing any code, let's define the folder structure for this project. The menu
interface should clearly be in its own module, since it will be an executable script,
and we may have other executable scripts accessing the notebook in the future. The
Notebook and Note objects can live together in one module. These modules can both
exist in the same top-level directory without having to put them in a package. An
empty command_option.py module can help remind us in the future that we were
planning to add new user interfaces.

parent directory/
notebook.py
menu.py
command option.py

Now, on to the code. Let's start by defining the Note class, as it seems simplest.
The following example presents Note in its entirety. Docstrings within the example
explain how it all fits together.

import datetime

Store the next available id for all new notes
last_id = 0

class Note:
' ' 'Represent a note in the notebook. Match against a

string in searches and store tags for each note.'"'

def init (self, memo, tags='"'):

[54]

Chapter 2

''"'initialize a note with memo and optional
space-separated tags. Automatically set the note's
creation date and a unique id.'''

self.memo = memo

self.tags = tags

self.creation date = datetime.date.today ()

global last_ id

last _id += 1

self.id = last_id

def match(self, filter):
''""Determine if this note matches the filter
text. Return True if it matches, False otherwise.

Search is case sensitive and matches both text and
tags.'''
return filter in self.memo or filter in self.tags

Before continuing, we should quickly fire up the interactive interpreter and test our
code so far. Test frequently and often, because things never work the way you expect
them to. Indeed, when I tested my first version of this example I found out I had
forgotten the self argument in the match function! We'll discuss automated testing
in Chapter 10; for now, it suffices to check a few things using the interpreter:

>>> from notebook import Note

>>>
>>>
>>>
1

>>>

>>>

True

>>>

nl

n2

nl.

n2.

nl

n2

False

>>>

Note("hello first™")

Note("hello again")
id

id

.match('hello"')

.match('second')

[55]

Objects in Python

It looks like everything is behaving as expected. Let's create our notebook next:

class Notebook:
' " 'Represent a collection of notes that can be tagged,
modified, and searched.'''

def init (self):
''"'"Initialize a notebook with an empty list.'''
self .notes = []

def new note(self, memo, tags='"'):
"' '"Create a new note and add it to the list.''!
self .notes.append (Note (memo, tags))

def modify memo(self, note id, memo) :
'"1'Find the note with the given id and change its
memo to the given value.''"'
for note in self.notes:
if note.id == note id:
note.memo = memo
break

def modify tags(self, note id, tags):
'"1'Find the note with the given id and change its
tags to the given value.''!
for note in self.notes:

if note.id == note id:
note.tags = tags
break

def search(self, filter):
'""1'"Find all notes that match the given filter
string.''!'
return [note for note in self.notes if
note.match(filter)]

We'll clean that up in a minute. First let's test it to make sure it works:

>>> from notebook import Note, Notebook
>>> n = Notebook ()

>>> n.new note("hello world")

>>> n.new note("hello again")

>>> n.notes

[56]

Chapter 2

[<notebook.Note object at 0xb730a78c>, <notebook.Note object at
0xb73103ac>]

>>> n.notes[0] .id

1

>>> n.notes[1].id

2

>>> n.notes[0] .memo

'hello world'

>>> n.search("hello")

[<notebook.Note object at 0xb730a78c>, <notebook.Note object at
0xb73103ac>]

>>> n.search("world")

[<notebook.Note object at 0xb730a78c>]

>>> n.modify memo(l, "hi world")

>>> n.notes[0] .memo

'hi world'

It does work. The code is a little messy though; our modify tags and modify memo
methods are almost identical. That's not good coding practice. Let's see if we
can fix it.

Both methods are trying to identify the note with a given ID before doing something
to that note. So let's add a method to locate the note with a specific ID. We'll prefix
the method name with an underscore to suggest that the method is for internal use
only, but of course, our menu interface can access the method if it wants to.

def _find note(self, note_id):
''"'Locate the note with the given id.'"'
for note in self.notes:
if note.id == note_id:
return note
return None

def modify memo (self, note id, memo) :
'"'Find the note with the given id and change its
memo to the given value.''!'
self. find note(note_id) .memo = memo

[57]

Objects in Python

That should work for now; let's have a look at the menu interface. The interface
simply needs to present a menu and allow the user to input choices. Here's
a first try:

import sys
from notebook import Notebook, Note

class Menu:
''"'Display a menu and respond to choices when run.'''
def init (self):
self .notebook = Notebook ()

self.choices = {
"1l": self.show notes,
"2": self.search notes,

"3": self.add note,
"4": self.modify note,
"5m: gelf.quit

}

def display menu(self) :
print (nmnn
Notebook Menu

1. Show all Notes
2. Search Notes
3. Add Note

4. Modify Note

5. Quit

nn ll)

def run(self):
''"'Display the menu and respond to choices.'!''
while True:
self.display menu()
choice = input ("Enter an option: ")
action = self.choices.get (choice)
if action:
action()
else:
print ("{0} is not a valid choice".format (choice))

def show notes(self, notes=None) :
if not notes:
notes = self.notebook.notes

[58]

Chapter 2

for note in notes:
print ("{0}: {1}\n{2}".format (
note.id, note.tags, note.memo))

def search notes(self):
filter = input("Search for: ")
notes = self.notebook.search(filter)
self.show notes (notes)

def add note(self):
memo = input ("Enter a memo: ")
self .notebook.new note (memo)
print ("Your note has been added.")

def modify note(self) :
id = input ("Enter a note id: ")
memo = input ("Enter a memo: ")
tags = input ("Enter tags: ")
if memo:
self .notebook.modify memo(id, memo)
if tags:
self .notebook.modify tags(id, tags)

def quit(self):
print ("Thank you for using your notebook today.")
sys.exit (0)

if name == " main ":

Menu () .run()

This code first imports the notebook objects using an absolute import. Relative
imports wouldn't work because we haven't placed our code inside a package. The
Menu class's run method repeatedly displays a menu and responds to choices by
calling functions on the notebook. This is done using an idiom that is rather peculiar
to Python. The choices entered by the user are strings. In the menu's __init we
create a dictionary that maps strings to functions on the menu object itself. Then
when the user makes a choice, we retrieve the object from the dictionary. The action
variable actually refers to a specific method and is called by appending empty
brackets (since none of the methods require parameters) to the variable. Of course,
the user might have entered an inappropriate choice, so we check if the action really
exists before calling it.

[59]

Objects in Python

The various methods each request user input and call appropriate methods on the
Notebook object associated with it. For the search implementation, we notice that
after we've filtered the notes, we need to show them. So we make the show notes
function serve double duty; it accepts an optional notes parameter. If it's supplied,

it displays only the filtered notes, but if it's not, it displays all notes. Since the notes
parameter is optional, show_notes can still be called with no parameters as an empty
menu item.

If we test this code, we'll find that modifying notes doesn't work. There are two
bugs, namely:

e The notebook crashes when we enter a note ID that does not exist. We should
never trust our users to enter correct data!

e Even if we enter a correct ID, it will crash because the note IDs are integers,
but our menu is passing a string.

The latter bug can be solved by modifying the Notebook class's _find_note
method to compare the values using strings instead of the integers stored in
the note, as follows:

def find note(self, note id):
'"'"Locate the note with the given id.'''
for note in self.notes:
if str(note.id) == str(note id):
return note

return None

We simply convert both the input (note_id) and the note's ID to strings before
comparing them. We could also convert the input to an integer, but then we'd have
trouble if the user had entered the letter "a" instead of the number "1".

The problem with users entering note IDs that don't exist can be fixed by changing
the two modi fy methods on the notebook to check if find note returned a note or
not, like this:

def modify memo(self, note id, memo) :
'""'Find the note with the given id and change its
memo to the given value.'''
note = self. find note(note_ id)
if note:
note.memo = memo
return True

return False

[60]

Chapter 2

This method has been updated to return True or False, depending on whether a
note has been found. The menu could use this return value to display an error if the
user entered an invalid note. This code is a bit unwieldy though; it would look a bit
better if it raised an exception instead. We'll cover those in Chapter 4.

Exercises

Write some object-oriented code. The goal is to use the principles and syntax you
learned in this chapter to ensure you can use it, instead of just reading about it. If
you've been working on a Python project, go back over it and see if there are some
objects you can create and add properties or methods to. If it's large, try dividing it
into a few modules or even packages and play with the syntax.

If you don't have such a project, try starting a new one. It doesn't have to be
something you intend to finish, just stub out some basic design parts. You don't
need to fully implement everything, often just a print ("this method will do
something") is all you need to get the overall design in place. This is called
top-down design, when you work out the different interactions and describe
how they should work before actually implementing what they do. The converse,
bottom-up design, implements details first and then ties them all together. Both
patterns are useful at different times, but for understanding object-oriented
principles, a top-down workflow is more suitable.

If you're having trouble coming up with ideas, try writing a TO DO application.
(Hint: It would be similar to the design of the notebook application, but with extra
date management methods.) It can keep track of things you want to do each day, and
allow you to mark them as completed.

Now, try designing a bigger project; it doesn't have to actually do anything, but
make sure you experiment with the package and module importing syntax. Add
some functions in various modules and try importing them from other modules and
packages. Use relative and absolute imports. See the difference, and try to imagine
scenarios where you would want to use each one.

[61]

Objects in Python

Summary

In this chapter, we learned how simple it is to create classes and assign properties
and methods in Python. We also covered access control and different levels of scope
(packages, modules, classes, and functions). In particular, we covered:

e C(lass syntax

e Attributes and methods

¢ Initializers and constructors

e Modules and packages

e Relative and absolute imports

e Access control and its limitations

In the next chapter, we'll learn how to share implementation using inheritance.

[62]

When Objects are Alike

In the programming world, duplicate code is considered evil. We should not have
multiple copies of the same, or similar code in different places.

There are many ways to merge similar pieces of code or objects with similar
functionality. In this chapter, we'll be covering the most famous object-oriented
principle: inheritance. As discussed in Chapter 1, inheritance allows us to create

"is a" relationships between two or more classes, abstracting common details into
superclasses and storing specific ones in the subclass. In particular, we'll be covering
the Python syntax and principles for:

e Basic inheritance
e Inheriting from built-ins

e Multiple inheritance
e Polymorphism and duck typing

Basic inheritance

Technically, every class we create uses inheritance. All Python classes are subclasses
of the special class named object. This class provides very little in terms of data
and behaviors (those behaviors it does provide are all double-underscore methods
intended for internal use only), but it does allow Python to treat all objects in the
same way.

If we don't explicitly inherit from a different class, our classes will automatically
inherit from object. However, we can openly state that our class derives from
object using the following syntax:

class MySubClass (object) :
pass

When Objects are Alike

This is inheritance! This example is, technically, no different from our very first
example in Chapter 2, since Python 3 automatically inherits from object if we don't
explicitly provide a different superclass. A superclass, or parent class, is a class that
is being inherited from. A subclass is a class that is inheriting from a superclass. In
this case, the superclass is object, and MySubClass is the subclass. A subclass is also
said to be derived from its parent class or that the subclass extends the parent.

As you've probably figured out from the example, inheritance requires a minimal
amount of extra syntax over a basic class definition. Simply include the name of the
parent class inside a pair of parentheses after the class name, but before the colon
terminating the class definition. This is all we have to do to tell Python that the new
class should be derived from the given superclass.

How do we apply inheritance in practice? The simplest and most obvious use of
inheritance is to add functionality to an existing class. Let's start with a simple
contact manager that tracks the name and e-mail address of several people. The
contact class is responsible for maintaining a list of all contacts in a class variable,
and for initializing the name and address, in this simple class:

class Contact:
all contacts = []

def init (self, name, email):
self.name = name
self.email = email
Contact.all contacts.append(self)

This example introduces us to class variables. The all_contacts list, because

it is part of the class definition, is actually shared by all instances of this class.
This means that there is only one contact.all contacts list, and if we call
self.all_contacts on any one object, it will refer to that single list. The code
in the initializer ensures that whenever we create a new contact, the list will
automatically have the new object added. Be careful with this syntax, for if you
ever set the variable using self.all_contacts, you will actually be creating a
new instance variable on the object; the class variable will still be unchanged and
accessible as Contact.all contacts.

[64]

Chapter 3

This is a very simple class that allows us to track a couple pieces of data about our
contacts. But what if some of our contacts are also suppliers that we need to order
supplies from? We could add an order method to the contact class, but that would
allow people to accidentally order things from contacts who are customers or family
friends. Instead, let's create a new Supplier class that acts like a Contact, but has an
additional order method:

class Supplier (Contact):
def order(self, order):
print ("If this were a real system we would send "
"{} order to {}".format (order, self.name))

Now, if we test this class in our trusty interpreter, we see that all contacts, including
suppliers, accept a name and e-mail address in their __init__, but only suppliers
have a functional order method:

>>> ¢ = Contact("Some Body", "somebody@example.net")
>>> s = Supplier("Sup Plier", "supplier@example.net")
>>> print(c.name, c.email, s.name, s.email)
Some Body somebody@example.net Sup Plier supplier@example.net
>>> c.all contacts
[<_ main .Contact object at 0xb7375ecc>,
<_ main .Supplier object at 0xb7375f£8c>]
>>> c.order ("Ineed pliers")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Contact' object has no attribute 'order'
>>> s.order ("I need pliers")
If this were a real system we would send I need pliers order to
Supplier

>>>
So now our Supplier class can do everything a Contact can do (including adding

itself to the list of all_contacts) and all the special things it needs to handle as a
supplier. This is the beauty of inheritance.

[65]

When Objects are Alike

Extending built-ins

One of the most interesting uses of this kind of inheritance is adding functionality
to built-in classes. In the Contact class seen earlier, we are adding contacts to a list
of all contacts. What if we also wanted to search that list by name? Well, we could
add a method on the contact class to search it, but it feels like this method actually
belongs on the list itself. We can do this using inheritance:

class ContactList(list):
def search(self, name) :
''"'Return all contacts that contain the search value
in their name.'''
matching contacts = []
for contact in self:
if name in contact.name:
matching contacts.append (contact)

return matching contacts

class Contact:
all contacts = ContactList()

def init (self, name, email):
self.name = name
self.email = email
self.all contacts.append(self)

Instead of instantiating a normal list as our class variable, we create a new
ContactList class that extends the built-in 1ist. Then we instantiate this subclass
asour all_contacts list. We can test the new search functionality as follows:

>>> ¢l = Contact("John A", "johna@example.net")
>>> ¢c2 = Contact("John B", "johnb@example.net")
>>> ¢3 = Contact("Jenna C", "jennac@example.net")

>>> [c.name for c in Contact.all contacts.search('John')]
['John A', 'John B']

>>>

Are you wondering how we changed the built-in syntax [] into something we can
inherit from? Creating an empty list with [] is actually a shorthand for creating an
empty list using 1ist (); the two syntaxes are identical:

>>> [] == 1list()

True

[66]

Chapter 3

So, the 1ist data type is like a class that we can extend, not unlike object.

As a second example, we can extend the dict class, which is the long way of creating
a dictionary (the { : } syntax).

class LongNameDict (dict) :
def longest key(self):
longest = None
for key in self:
if not longest or len(key) > len(longest):
longest = key
return longest

This is easy to test in the interactive interpreter:

>>> longkeys = LongNameDict ()
>>> longkeys['hello'] =1

>>> longkeys|['longest yet'] = 5
>>> longkeys['hello2'] = 'world'
>>> longkeys.longest key ()
'longest yet'

Most built-in types can be similarly extended. Commonly extended built-ins are
object, list, set, dict, file, and str. Numerical types such as int and float
are also occasionally inherited from.

Overriding and super

So inheritance is great for adding new behavior to existing classes, but what about
changing behavior? Our contact class allows only a name and an e-mail address.
This may be sufficient for most contacts, but what if we want to add a phone number
for our close friends?

As we saw in Chapter 2, we can do this easily by just setting a phone attribute on the
contact after it is constructed. But if we want to make this third variable available on
initialization, we have to override ___init_ . Overriding is altering or replacing a
method of the superclass with a new method (with the same name) in the subclass.
No special syntax is needed to do this; the subclass's newly created method is
automatically called instead of the superclass's method. For example:

class Friend (Contact) :

def init (self, name, email, phone):
self.name = name
self.email = email

self.phone = phone

[67]

When Objects are Alike

Any method can be overridden, notjust __init__ . Before we go on, however,

we need to correct some problems in this example. Our Contact and Friend
classes have duplicate code to set up the name and email properties; this can make
maintenance complicated, as we have to update the code in two or more places.
More alarmingly, our Friend class is neglecting to add itself to the all_contacts
list we have created on the Contact class.

What we really need is a way to call code on the parent class. This is what the super
function does; it returns the object as an instance of the parent class, allowing us to
call the parent method directly:

class Friend (Contact) :
def init (self, name, email, phone):
super (). init (name, email)

self.phone = phone

This example first gets the instance of the parent object using super, and calls
__init__ on that object, passing in the expected arguments. It then does its own
initialization, namely setting the phone attribute.

A super () call can be made inside any method, notjust __init__.This means all
methods can be modified via overriding and calls to super. The call to super can also
be made at any point in the method; we don't have to make the call as the first line

in the method. For example, we may need to manipulate the incoming parameters
before forwarding them to the superclass.

Multiple inheritance

Multiple inheritance is a touchy subject. In principle, it's very simple: a subclass
that inherits from more than one parent class is able to access functionality from
both of them. In practice, this is much less useful than it sounds and many expert

programmers recommend against using it. So we'll start with a warning;:

As a rule of thumb, if you think you need multiple inheritance, you're
= probably wrong, but if you know you need it, you're probably right.

The simplest and most useful form of multiple inheritance is called a mixin. A mixin
is generally a superclass that is not meant to exist on its own, but is meant to be
inherited by some other class to provide extra functionality. For example, let's say
we wanted to add functionality to our contact class that allows sending an e-mail
to self.email. Sending e-mail is a common task that we might want to use on many
other classes. So we can write a simple mixin class to do the e-mailing for us:

[68]

Chapter 3

class MailSender:
def send mail (self, message):
print ("Sending mail to " + self.email)
Add e-mail logic here

For brevity, we won't include the actual e-mail logic here; if you're interested in
studying how it's done, see the smtplib module in the Python standard library.

This class doesn't do anything special (in fact, it can barely function as a
stand-alone class), but it does allow us to define a new class that is both a
Contact and a MailSender, using multiple inheritance:

class EmailableContact (Contact, MailSender) :
pass

The syntax for multiple inheritance looks like a parameter list in the class definition.
Instead of including one base class inside the parenthesis, we include two (or more),
separated by a comma. We can test this new hybrid to see the mixin at work:

>>> e = EmailableContact ("John Smith", "jsmith@example.net")
>>> Contact.all contacts

[< main .EmailableContact object at 0xb7205fac>]

>>> e.send mail ("Hello, test e-mail here")

Sending mail to jsmith@example.net

The contact initializer is still adding the new contact to the all contacts list, and
the mixin is able to send mail to self.email so we know everything is working.

That wasn't so hard, and you're probably wondering what the dire warnings about
multiple inheritance are. We'll get into the complexities in a minute, but let's consider
what options we had, other than using a mixin here:

e We could have used single inheritance and added the send_mail function to
the subclass. The disadvantage here is that the e-mail functionality then has
to be duplicated for any other classes that need e-mail.

e We can create a stand-alone Python function for sending mail, and just call
that, with the correct e-mail address supplied as a parameter, when e-mail
needs to be sent.

e We could monkey-patch (we'll briefly cover monkey-patching in
Chapter 7) the Contact class to have a send_mail method after the class
has been created. This is done by defining a function that accepts the self
argument, and setting it as an attribute on an existing class.

[69]

When Objects are Alike

Multiple inheritance works all right when mixing methods from different classes, but
it gets very messy when we have to work with calling methods on the superclass.
Why? Because there are multiple superclasses. How do we know which one to call?
How do we know what order to call them in?

Let's explore these questions by adding a home address to our Friend class. What
are some ways we could do this? An address is a collection of strings representing
the street, city, country, and other related details of the contact. We could pass each
of these strings as parameters into the Friend class's __init__ method. We could
also store these strings in a tuple or dictionary and pass them into __init__asa
single argument. This is probably the best course of action if there is no additional
functionality that needs to be added to the address.

Another option would be to create a new Address class to hold those strings
together, and then pass an instance of this class into the __init__ in our Friend
class. The advantage of this solution is that we can add behavior (say, a method to
give directions to that address or to print a map) to the data instead of just storing it
statically. This would be utilizing composition, the "has a" relationship we discussed
in Chapter 1. Composition is a perfectly viable solution to this problem and allows
us to reuse Address classes in other entities such as buildings, businesses,

or organizations.

However, inheritance is also a viable solution, and that's what we want to explore, so
let's add a new class that holds an address. We'll call this new class AddressHolder
instead of Address, because inheritance defines an "is a" relationship. It is not correct
to say a Friend is an Address, but since a friend can have an Address, we can argue
that a Friend is an AddressHolder. Later, we could create other entities (companies,
buildings) that also hold addresses. Here's our AddressHolder class:

class AddressHolder:
def init (self, street, city, state, code):
self.street = street
self.city = city
self.state = state
self.code = code

Very simple; we just take all the data and toss it into instance variables
upon initialization.

[70]

Chapter 3

The diamond problem

But how can we use this in our existing Friend class, which is already inheriting
from contact? Multiple inheritance, of course. The tricky part is that we now have
two parent __init__ methods that both need to be initialized. And they need to be
initialized with different arguments. How do we do that? Well, we could start with
the naive approach:

class Friend(Contact, AddressHolder) :
def _ init_ (self, name, email, phone,
street, city, state, code):
Contact._ init (self, name, email)
AddressHolder. init__ (
self, street, city, state, code)
self .phone = phone

In this example, we directly call the __init__ function on each of the superclasses
and explicitly pass the self argument. This example technically works; we can
access the different variables directly on the class. But there are a few problems.

First, it is possible for a superclass to go uninitialized if we neglect to explicitly call
the initializer. This is not bad in this example, but it could cause bad program crashes
in common scenarios. Imagine, for example, trying to insert data into a database that
has not been connected to.

Second, and more sinister, is the possibility of a superclass being called
multiple times, because of the organization of the class hierarchy. Look at
this inheritance diagram:

object
+_init_()

[1
Contact AddressHolder
+_init_() +_init_()

A : A
Friend
+_init_()

The init method from the Friend class first calls _init on Contact which
implicitly initializes the object superclass (remember, all classes derive from
object). Friend thencalls __init__ on AddressHolder, which implicitly initializes
the object superclass... again. The parent class has been set up twice. In this case,
that's relatively harmless, but in some situations, it could spell disaster. Imagine
trying to connect to a database twice for every request! The base class should only be
called once. Once, yes, but when? Do we call Friend then Contact then object then
AddressHolder? Or Friend then Contact then AddressHolder then Object?

[71]

When Objects are Alike

Technically, the order in which methods can be called can be adapted on

the fly by modifying the _ mro__ (Method Resolution Order) attribute

~ on the class. This is beyond the scope of this book. If you think you need
to understand it, I recommend Expert Python Programming, Tarek Ziadé,
Packt Publishing, or read the original documentation on the topic at:
http://www.python.org/download/releases/2.3/mro/

Let's look at a second contrived example that illustrates this problem more clearly.
Here we have a base class that has a method named call me. Two subclasses
override that method, and then another subclass extends both of these using multiple
inheritance. This is called diamond inheritance because of the diamond shape of the
class diagram:

BaseClass
+call_me(),

[|
LeftSubclass RightSubclass
+call_me() +call_me()

: A
Subclass
+call_me()

Diamonds are what makes multiple inheritance tricky. Technically, all multiple
inheritance in Python 3 is diamond inheritance, because all classes inherit from
object. The previous diagram, using object.__init__is also such a diamond.

Converting this diagram to code, this example shows when the methods are called:

class BaseClass:
num base calls = 0
def call me(self):
print ("Calling method on Base Class")
self.num base calls += 1

class LeftSubclass (BaseClass):
num_left calls = 0
def call me(self):
BaseClass.call me(self)
print ("Calling method on Left Subclass")
self.num left calls += 1

[72]

Chapter 3

class RightSubclass (BaseClass):
num_right calls = 0
def call me(self):
BaseClass.call me(self)
print ("Calling method on Right Subclass")
self .num right calls += 1

class Subclass(LeftSubclass, RightSubclass):
num_sub calls = 0
def call me(self):
LeftSubclass.call me (self)
RightSubclass.call_me (self)
print ("Calling method on Subclass")
self.num sub calls += 1

This example simply ensures each overridden call_me method directly calls the
parent method with the same name. Each time it is called, it lets us know by printing
the information to the screen, and updates a static variable on the class to show how
many times it has been called. If we instantiate one Subclass object and call the
method on it once, we get this output:

>>> s = Subclass()

>>> s.call me()

Calling method on Base Class

Calling method on Left Subclass

Calling method on Base Class

Calling method on Right Subclass

Calling method on Subclass

>>> print(s.num sub calls, s.num left calls, s.num right calls,
s.num base calls)

1112

>>>

The base class's call_me method has been called twice. This isn't expected behavior
and can lead to some very difficult bugs if that method is doing actual work —like
depositing into a bank account twice.

[73]

When Objects are Alike

The thing to keep in mind with multiple inheritance is that we only want to call

the "next" method in the class hierarchy, not the "parent" method. In fact, that next
method may not be on a parent or ancestor of the current class. The super keyword
comes to our rescue once again. Indeed, super was originally developed to make
complicated forms of multiple inheritance possible. Here is the same code written
using super:

class BaseClass:
num _base calls = 0
def call me (self):
print ("Calling method on Base Class")
self .num base calls += 1

class LeftSubclass (BaseClass) :
num_left calls = 0
def call me (self):
super () .call me()
print ("Calling method on Left Subclass")
self.num left calls += 1

class RightSubclass (BaseClass) :
num_right calls = 0
def call me (self):
super () .call_me ()
print ("Calling method on Right Subclass")
self.num right_calls += 1

class Subclass (LeftSubclass, RightSubclass):
num_sub_calls = 0
def call me (self):
super () .call_me ()
print ("Calling method on Subclass")
self.num sub calls += 1

The change is pretty minor; we simply replaced the naive direct calls with calls to
super (). This is simple enough, but look at the difference when we execute it:

>>> s = Subclass()

>>> s.call me()

Calling method on Base Class
Calling method on Right Subclass
Calling method on Left Subclass

Calling method on Subclass

[74]

Chapter 3

>>> print(s.num sub calls, s.num left calls, s.num right calls,
s.num base calls)

1111

Looks good, our base method is only being called once. But what is super () actually
doing here? Since the print statements are executed after the super calls, the printed
output is in the order each method is actually executed. Let's look at the output from
back to front to see who is calling what.

First call me of Subclass calls super () .call_me (), which happens to refer to
LeftSubclass.call me().LeftSubclass.call me () then calls super () .call

me (), but in this case, super () is referring to RightSubclass.call_me (). Pay
particular attention to this; the super call is not calling the method on the superclass
of LeftSubclass (which is BaseClass), it is calling Right Subclass, even though

it is not a parent of LeftSubclass! This is the next method, not the parent method.
RightSubclass then calls BaseClass and the super calls have ensured each method
in the class hierarchy is executed once.

Different sets of arguments

Can you see how this is going to make things complicated when we return to our
Friend multiple inheritance example? Inthe init method for Friend, we were
originally calling init__ for both parent classes, with different sets of arquments:

Contact._ init (self, name, email)

AddressHolder. init (self, street, city, state, code)

How can we convert this to using super? We don't necessarily know which class
super is going to try to initialize first. Even if we did, we need a way to pass the
"extra" arguments so that subsequent calls to super, on other subclasses, have the
right arguments.

Specifically, if the first call to super passes the name and email arguments
to Contact. init ,and Contact. init then calls super, it needs to
be able to pass the address related arguments to the "next" method, which is
AddressHolder. init .

This is a problem whenever we want to call superclass methods with the same
name, but different sets of arguments. Most often, the only time you would want

to call a superclass with a completely different set of argumentsisin __ init_, as
we're doing here. Even with regular methods, though, we may want to add optional
parameters that only make sense to one subclass or a set of subclasses.

[75]

When Objects are Alike

Sadly, the only way to solve this problem is to plan for it from the beginning. We
have to design our base class parameter lists so that they accept keyword arguments
for any argument that is not required by every subclass implementation. We also
have to ensure the method accepts arguments it doesn't expect and pass those on in
its super call, in case they are necessary to later methods in the inheritance order.

Python's function parameter syntax provides all the tools we need to do this, but it
makes the overall code cumbersome. Have a look at the proper version of the Friend
multiple inheritance code:

class Contact:
all contacts = []

def _ init (self, name='"', email='', **kwargs):
super (). init (**kwargs)
self.name = name
self.email = email

self.all contacts.append(self)

class AddressHolder:
def init (self, street='', city='', state='', code='"',
**kwargs) :
super (). init (**kwargs)
self.street = street
self.city = city
self.state = state
self.code = code

class Friend(Contact, AddressHolder) :
def _ init (self, phone='"', **kwargs):
super (). init (**kwargs)
self.phone = phone

We've changed all arguments to keyword arguments by giving them an empty string
as a default value. We've also ensured that a **kwargs parameter is included to
capture any additional parameters that our particular method doesn't know what to
do with. It passes these parameters up to the next class with the super call.

If you aren't familiar with the * *kwargs syntax, it basically collects any
keyword arguments passed into the method that were not explicitly
\l listed in the parameter list. These arguments are stored in a dictionary

~ named kwargs (we can call the variable whatever we like, but convention
suggests kw, or kwargs). When we call a different method (for example:
super () . init) witha **kwargs syntax, it unpacks the dictionary
and passes the results to the method as normal keyword arguments. We'll
cover this in detail in Chapter 7.

[76]

Chapter 3

The previous example does what it is supposed to do. But it's starting to look messy,
and it has become difficult to answer the question, "What arguments do we need to
pass into Friend. init_ ?" This is the foremost question for anyone planning to
use the class, so a docstring should be added to the method to explain what

is happening.

Further, even this implementation is insufficient if we want to "reuse" variables in
parent classes. When we pass the **kwargs variable to super, the dictionary does
not include any of the variables that were included as explicit keyword arguments.
For example, in Friend.__init__, the call to super does not have phone in the
kwargs dictionary. If any of the other classes need the phone parameter, we need to
ensure it is in the dictionary that is passed. Worse, if we forget to do that, it will be
tough to debug, because the superclass will not complain, but will simply assign the
default value (in this case, an empty string) to the variable.

There are a few ways to ensure that the variable is passed upwards. Assume the
Contact class does, for some reason, need to be initialized with a phone parameter,
and the Friend class will also need access to it. We can do any of the following:

e Don't include phone as an explicit keyword argument. Instead, leave it
in the kwargs dictionary. Friend can look it up using the syntax
kwargs ['phone']. When it passes **kwargs to the super call,
phone will still be in the dictionary.

e Make phone an explicit keyword argument but update the kwargs
dictionary before passing it to super, using the standard dictionary
syntax kwargs ['phone'] = phone.

e Make phone an explicit keyword argument, but update the kwargs
dictionary using the kwargs . update method. This is useful if you have
several arguments to update. You can create the dictionary passed into
update using either the dict (phone=phone) constructor, or the dictionary
syntax { 'phone' : phone}.

e Make phone an explicit keyword argument, but pass it to the super call
explicitly with the syntax super () .__init__ (phone=phone, **kwargs).

We have covered many of the caveats involved with multiple inheritance in Python.
When we need to account for all the possible situations, we have to plan for them
and our code will get messy. Basic multiple inheritance can be handy, but in many
cases, we may want to choose a more transparent way of combining two disparate
classes, usually using composition or one of the design patterns we'll be covering in
Chapter 8 and Chapter 9.

[77]

When Objects are Alike

Polymorphism

We introduced polymorphism in Chapter 1. It is a fancy name describing a simple
concept; different behaviors happen depending on which subclass is being used,
without having to explicitly know what the subclass actually is. As an example,
imagine a program that plays audio files. A media player might need to load an
AudioFile object and then play it. We'd put a play () method on the object, which
is responsible for decompressing or extracting the audio and routing it to the sound
card and speakers. The act of playing an AudioFile could feasibly be as simple as:

audio file.play ()

However the process of decompressing and extracting an audio file is very different
for different types of files. The .wav files are stored uncompressed, while .mp3, .wma,
and . ogg files all have very different compression algorithms.

We can use inheritance with polymorphism to simplify the design. Each type of

file can be represented by a different subclass of AudioFile, for example, WavFile,
MP3File. Each of these would have a play () method, but that method would be
implemented differently for each file to ensure the correct extraction procedure is
followed. The media player object would never need to know which subclass of
AudioFile it is referring to; it just calls play () and polymorphically lets the object
take care of the actual details of playing. Let's look at a quick skeleton showing how
this might look:

class AudioFile:
def init (self, filename):
if not filename.endswith(self.ext):
raise Exception("Invalid file format")

self.filename = filename

class MP3File (AudioFile) :
ext = "mp3"
def play(self):
print ("playing {} as mp3".format (self.filename))

class WavFile (AudioFile) :
ext = "wav"
def play(self):
print ("playing {} as wav".format (self.filename))

class OggFile (AudioFile) :
ext = "ogg"
def play(self):
print ("playing {} as ogg".format (self.filename))

[78]

Chapter 3

All audio files check to ensure that a valid extension was given upon initialization.
But notice how the __init_ method in the parent class is able to access the ext
class variable from different subclasses? That's polymorphism at work. If the
filename doesn't end with the correct name, it raises an exception (exceptions will
be covered in detail in the next chapter). The fact that AudioFile doesn't actually
store a reference to the ext variable doesn't stop it from being able to access it on
the subclass.

In addition, each subclass of AudioFile implements play () in a different way

(this example doesn't actually play the music; audio compression algorithms really
deserve a separate book!). This is also polymorphism in action. The media player can
use the exact same code to play a file, no matter what type it is; it doesn't care what
subclass of audioFile it is looking at. The details of decompressing the audio file are
encapsulated. If we test this example, it works as we would hope:

>>> ogg = OggFile("myfile.ogg")

>>> ogg.play ()

playing myfile.ogg as ogg

>>> mp3 = MP3File("myfile.mp3")

>>> mp3.play ()

playing myfile.mp3 as mp3

>>> not an mp3 = MP3File("myfile.ogg")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "polymorphic audio.py", line 4, in init

raise Exception("Invalid file format")

Exception: Invalid file format

See how AudioFile. init__is able to check the file type without actually
knowing what subclass it is referring to?

Polymorphism is actually one of the coolest things about object-oriented
programming, and it makes some programming designs obvious that weren't
possible in earlier paradigms. However, Python makes polymorphism less cool
because of duck typing. Duck typing in Python allows us to use any object that
provides the required behavior without forcing it to be a subclass. The dynamic
nature of Python makes this trivial. The following example does not extend
AudioFile, but it can be interacted with in Python using the exact same interface:

class FlacFile:
def init (self, filename):
if not filename.endswith(".flac"):

[79]

When Objects are Alike

raise Exception("Invalid file format")
self.filename = filename

def play(self):
print ("playing {} as flac".format (self.filename))

Our media player can play this object just as easily as one that extends AudioFile.

Polymorphism is one of the most important reasons to use inheritance in many
object-oriented contexts. Because any objects that supply the correct interface can
be used interchangeably in Python, it reduces the need for polymorphic common
superclasses. Inheritance can still be useful for sharing code, but if all that is being
shared is the public interface, duck typing is all that is required. This reduced need
for inheritance also reduces the need for multiple inheritance; often, when multiple
inheritance appears to be a valid solution, we just can use duck typing to mimic one
of the multiple superclasses.

Of course, just because an object satisfies a particular interface (by providing
required methods or attributes) does not mean it will simply work in all situations.
It has to fulfill that interface in a way that makes sense in the overall system. Just
because an object provides a play () method does not mean it will automatically
work with a media player. For example, our chess Al object from Chapter 1 may have
a play () method that moves a chess piece. Even though it satisfies the interface,

this class would likely break in spectacular ways if we tried to plug it into a

media player!

Another useful feature of duck typing is that the duck-typed object only needs to
provide those method and attributes that are actually being accessed. For example,
if we needed to create a fake file object to read data from, we can create a new object
that has a read () method; we don't have to override the write method if the code
that is going to interact with the object will only be reading from the file. More
succinctly, duck typing doesn't need to provide the entire interface of an object

that is available, it only needs to fulfill the interface that is actually used.

Case study

Let's try to tie everything we've learned together with a larger example. We'll be
designing a simple real estate application that allows an agent to manage prope